
SWIFT

Predictive Fast Reroute upon Remote BGP Disruptions

Laurent Vanbever

Networked Systems, D-ITET

December 5 2016

D-INFK Lunch Seminar

The Fortune Teller by Caravaggio, 1595. Louvre, Paris



25.9 seconds



maximum monthly downtime

under a 99.999% SLA

25.9 seconds



>2.5 minutes

maximum monthly downtime

under a 99.999% SLA

25.9 seconds



>2.5 minutes

maximum monthly downtime

under a 99.999% SLA

25.9 seconds

measured router downtime

upon large Internet failures



3 seconds

>2.5 minutes

maximum monthly downtime

under a 99.999% SLA

25.9 seconds

measured router downtime

upon large Internet failures



SWIFT  measured downtime

upon large Internet failures

>2.5 minutes

maximum monthly downtime

under a 99.999% SLA

25.9 seconds

measured router downtime

upon large Internet failures

3 seconds



IP routers are slow to converge 

upon remote link and node failures
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R1 prefers to send traffic via R2 when possible, 

as it is much cheaper than via R3
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dataset a month (July’16) worth of Internet updates

from ~200 routers scattered around the globe

methodology detect the beginning and the end of a burst

using a 10 sec sliding window

We measured how long it takes for large bursts of 

BGP updates to propagate in the Internet
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We found a total of 2619 bursts over the month
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25

We measured how long it takes for recent routers 

to update a growing number of forwarding entries

ETH recent routers

deployed

Cisco Nexus 7k

106 CHF (fully loaded)
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Internet convergence

a two-phase process

prefix-based

and hence, slow

Learning  

about the failure

Updating 

 forwarding entries

Phase 1 Phase 2



Convergence times are only gonna get worse 

as the Internet continues to grow (*)

(*) http://www.cidr-report.org/



Joint work with: Thomas Holterbach, Alberto Dainotti, Stefano Vissicchio

SWIFT : Predictive Fast Rerouting
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SWIFT leverages redundant info in routing messages  

to predict which links went down

(A,B) 0.30

(A,D) 0.70
……

Links failure  
probability

WITHDRAW p1

WITHDRAW p2

…

Links {(A,D)} is dead

Predictions

BGP messages

p3 via [X, E, C, A]

Prediction 

module



AS10

AS20 AS30

AS40

AS50

The Internet is a network of >50,000 networks, 

referred to as Autonomous Systems (AS)
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BGP sessions

BGP is the routing protocol  

“glueing” the Internet together
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The stream of messages following a disruption contain 

redundant information about the failed resource



enables prediction

The stream of messages following a disruption contain 

redundant information about the failed resource



Feedback comes in two forms: 

positive or negative

positive

negative affected prefixes were routed on paths which

did contain the failed link

unaffected prefixes are routed on paths which

do not contain the failed link
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(1 2 5 6 7)
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unaffected prefixes:

(1 2)

10k
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candidates set:

(1,2); (2,5); (5,6); (6,7)

After receiving messages pertaining to one path, 

the failure can be located anywhere alongside it

affected prefixes:
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After receiving messages pertaining to multiple paths, 

the failure is likely located in their intersections

candidates set: affected prefixes:



affected prefixes:
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(1,2); (2,5); (5,6);

(1,2); (2,5); (5,6); (6,7)

Not receiving messages pertaining to given links 

is a strong indication that they are still up

candidates set:
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SWIFT predicts link failures in two stages: 

burst detection and link identification
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Step 1 

burst detection

Step 2 

link identification



Withdrawal share Path share

WS(l, t) PS(l, t)

Whenever the frequency of WITHDRAWALs is higher 

than a threshold (e.g., >99th percentile)

Return the link(s) that maximizes  

the weighted geometric mean between:

fraction of withdraws 

crossing link l

proportion of prefixes 

withdrawn on link l

Step 1 

burst detection

Step 2 

link identification
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in the messages were going over (6,7) and (6,8)
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If all ASes inject at least one prefix, 

SWIFT  will always pinpoint the failed link

Theorem

When run on the full burst, 

SWIFT is guaranteed to find the right link



not that helpful…

When run on the full burst 

SWIFT is guaranteed to find the right link



Yet, SWIFT work well 

in realistic scenarios

Messages tend to be interleaved

providing diverse path information early on

Intuition



SWIFT compensates for lack of information, 

by being overly cautious and iterative

Returns set of links failures

all links with high fit score

Runs multiple times sequentially

after 2.5k, 5k, 7.5k, 10k,… messages 



Returns set of links failures

all links with high fit score

Runs multiple times sequentially

after 2.5k, 5k, 7.5k, 10k,… messages

Increase the number of false positives

the amount of wrongly rerouted traffic



Good news 

False positives are not an issue!

26 seconds

allowed downtime 

for 99.999%

129 600 secondsvs

allowed free-riding 

on a peering link



SWIFT prediction are accurate 

early on in the burst

dataset 2619 large bursts identified in July 2016

acts as “ground truth”

methodology iteratively run SWIFT prediction

on a growing subset of each burst

compare SWIFT prediction

 with the actual WITHDRAWs



2.5K

5.0K

7.5K

10K

50th 75th 90th

87.50% 99.10% 99.99%

89.70% 98.80% 98.99%

92.99% 99.10% 99.99%

95.40% 99.60% 99.99%

SWIFT predicts ~90% of the withdrawn prefixes 

based on only 2.5k messages
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10K

50th 75th 90th

0.2x 1.4x 8.9x

0.2x 1.6x 7.2x

0.2x 1.8x 7.8x

0.4x 2.8x 9.6x

SWIFT reroutes few non-disrupted prefixes 

despite not being optimized for it
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Upon a prediction, SWIFT needs to update 

the corresponding forwarding entries
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Upon the prediction of (R2, R4) going down, 

300k entries have to be updated to 1
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Upon failure, all of them have to be updated

inefficient, but also unnecessary 

Entries do not share any information

even if they are identical

The problem is that  

forwarding tables are flat



Upon failure, all of them have to be updated

inefficient, but also unnecessary 

Entries do not share any information

even if they are identical

Solution: introduce a hierarchy

as with any problem in CS…

The problem is that  

forwarding tables are flat
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NH

SWIFT computes the pointer attached to each prefix 

in function of the links it crosses in the Internet
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pointer 0x5FA48B



5***** indicates a prefix 

crossing the link (1,2)

pointer 0x5FA48B



pointer 0x5FA48B

*F**** indicates a prefix 

crossing the link (2,4) 



Pointer table

Upon the predicted failure of link (2,4), 

SWIFT add a rerouting rules for 0x*F**** to port 1

port 0

port 1

IP prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

600k

…… …

Pointer

300k
…… …

100.0.0.0/8

0x5FA48B

0x5FA448

0x5F848A

Mapping table

0x5FA432 Pointer NH

0x*F**** 1

00x5FA432
… …

0x5FA48B 0



This rule automatically reroutes 300k prefixes
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Pointers are encoded on 48 bits, SWIFT therefore 

reduce the graph before encoding the links

Ignore any link seeing less than 1.5k pfxes

anything less converges fast enough already

Ignore link far away from the SWIFTed node

less likely to create large bursts of WITHDRAWs

Recipe #1

Recipe #2
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SWIFT encoding enables to reroute  

96% of the prefixes with only 18 bits
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We implemented a full SWIFT prototype  

and boosted existing routers’ convergence
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To boost the performance of a router,  

we augmented its control-plane and data-plane
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In the data-plane, we insert a SDN switch  

to implement the pointer table

IP router SDN  
switch



In the control-plane, we insert a controller to 

maintain BGP state, predicts failures and drive the switch

…

peern
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IP router SDN  
switch

SWIFT controller
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controller

REST API

SDN & ARP 
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SWIFT reduces the convergence time of the Cisco router 

from ~50s to max 3s
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SWIFT : Predictive Fast Rerouting



SWIFT significantly speeds up router convergence 

upon frequent remote Internet failure

SWIFT predictions are quick and accurate

close to 90% accuracy early on in the burst

SWIFT encoding is efficient

fast converge 95% of the predicted prefixes

SWIFT works in practice

95% speed-up compared to Cisco routers


