SWIFT

Laurent Vanbever

Networked Systems, D-ITET

D-INFK Lunch Seminar
December 5 2016

The Fortune Teller by Caravaggio, 1595. Louvre, Paris

25.9 seconds

25.9 maximum monthly downtime

under a 99.999% SLA

25.9 seconds maximum monthly downtime
under a 99.999% SLA

>2.5 minutes

>2.5 measured router downtime

upon large Internet failures

25.9 seconds maximum monthly downtime
under a 99.999% SLA

>2.5 minutes measured router downtime

upon large Internet failures

3 seconds

SWIFT measured downtime

upon large Internet failures

IP routers are slow to converge
upon remote link and node failures

R1 prefers to send traffic via R2 when possible,
as it is much cheaper than via R3

R1 forwards traffic to R2
for any destination R2 advertises

R2 ¢ — preferred

R6

R1’s Forwarding Table

IP prefix Next-Hop
1 1.0.0.0/24 0
2 1.0.1.0/16 0
300k 100.0.0.0/8 0

600k 200.99.0.0/24 0

What if R4 fails?

R1’s Forwarding Table

IP prefix Next-Hop
1 1.0.0.0/24 0
2 1.0.1.0/16 0
300k 100.0.0.0/8 0

600k 200.99.0.0/24 0

R2 sends a burst of 300k routing messages
withdrawing the routes learned from R4

R1’s Forwarding Table

300k
WITHDRAWs Ro

IP prefix Next-Hop
1 1.0.0.0/24 0
2 1.0.1.0/16 0
300k 100.0.0.0/8 0

600k 200.99.0.0/24 0

R1 receives the messages one-by-one and
updates its forwarding table entry-by-entry

R1’s Forwarding Table

300k
WITHDRAWs Ro

IP prefix Next-Hop
1 1.0.0.0/24 0
2 1.0.1.0/16 0
300k 100.0.0.0/8 0

600k 200.99.0.0/24 0

R1’s Forwarding Table

300k
WITHDRAWSs Ro

IP prefix Next-Hop
1 1.0.0.0/24 1
2 1.0.1.0/16 0
300k 100.0.0.0/8 0

600k 200.99.0.0/24 0

R1’s Forwarding Table

300k
WITHDRAWSs Ro

IP prefix Next-Hop
1 1.0.0.0/24 1
2 1.0.1.0/16 1
300k 100.0.0.0/8 0

600k 200.99.0.0/24 0

R1’s Forwarding Table

300k
WITHDRAWSs Ro

IP prefix Next-Hop
1 1.0.0.0/24 1
2 1.0.1.0/16 1
300k 100.0.0.0/8 1

600k 200.99.0.0/24 0

Internet convergence

a two-phase process

Phase 1 Phase 2

Learning Updating

>
about the failure forwarding entries

two-phase

both of which are terribly slow

Internet convergence

a two-phase process

Phase 1 Phase 2

Learning Updating

>
about the failure forwarding entries

Internet convergence

a two-phase process

Phase 1 Phase 2

Learning Updating

>
about the failure forwarding entries

We measured how long it takes for large bursts of
BGP updates to propagate in the Internet

a month (July’16) worth of Internet updates

from ~200 routers scattered around the globe

detect the beginning and the end of a burst

using a 10 sec sliding window

burst size

nb of bursts

106 ,

105 |

104 |

103

103 |
102 |

10 |

0-2

2-8 8-15 15-30 30-60 60-90 120-200
90-120

burst duration (sec)

>200

We found a total of 2619 bursts over the month

burst size

nb of bursts

106 ,

105 |

103 ¢

104 |

103

102 |

100 |

1101 809

308 247

0-2 2-8 8-15 15-30 30-60 60-90 120-200
90-120 >200

burst duration (sec)

15% of the bursts takes more than 15s to be learned

106 ,

burst size .
105 |

104 |

103

1101 809
103 | 247

nb of bursts

: 92
102 |)

10" |

0-2 2-8 8-15 15-30 30-60 60-90 120-200
90-120 >200

burst duration (sec)

Slow-to-learn bursts tend to be big

burst size

nb of bursts

106 ,

105 |

104 |

103

103 |
102 |

100 |

£ = -
. Z': + O]
[| | — u |
o | I

0 , |

‘ T I —:— L -

0-2 2-8 8-15 15-30 30-60 60-90 120-200

90-120 >200

burst duration (sec)

~10% of the bursts contained more than 100k prefixes

106 . .
: t * =S !
burst size 1 : _ o s e |
105 < i T _;_ - —
0

104;_; s . .

103

.H-

P

J
1

P

J

nb of bursts 107

102 |

10 |

0-2 2-8 8-15 15-30 30-60 60-90 120-200
90-120 >200

burst duration (sec)

Internet convergence

a two-phase process

Phase 1 Phase 2

Learning Updating

>
about the failure forwarding entries

We measured how long it takes for recent routers
to update a growing number of forwarding entries

Cisco Nexus 7k

ETH recent routers

25 deployed

update 150 —
time (s)

10 —

1 —

0.1 -

| | | | | | | | |
1K 5K 10K 50K 100K 200K 300K 400K 500K

of prefixes

worst-case

update 150 —
time (s)

10 —

1 —

0.1 -

| | | | ! ! | | !
1K 5K 10K 50K 100K 200K 300K 400K 500K

of prefixes

worst-case

update 150 —
time (s)
median case
10 —
1 |
0.1 -

| | | | | | | | |
1K 5K 10K 50K 100K 200K 300K 400K 500K

of prefixes

Traffic can be lost for several minutes N

150 —

10 —

0.1 —

| | | | | | | | |
1K 5K 10K 50K 100K 200K 300K 400K 500K

of prefixes

Internet convergence

a two-phase process

Phase 1 Phase 2

Learning Updating

>
about the failure forwarding entries

Internet convergence

a two-phase process

Phase 1

Learning
about the failure

Phase 2

Updating
forwarding entries

> prefix-based +

and hence, slow

Convergence times are only gonna get worse
as the Internet continues to grow (%)

om0 O N B
600000 —i i E E E i 5 E
500000 —? AR L T
400000 -g g é é é ; ; é

R

Active BGP entries (FIB)

200000 [-----i---einoehooecbonebenadenend

1 I L 1
89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 03 09 10 11 12 13 14 15 16
Date

(*) http://www.cidr-report.org/

SWIFT: Predictive Fast Rerouting

Joint work with: Thomas Holterbach, Alberto Dainotti, Stefano Vissicchio

SWIFT: Predictive Fast Rerouting

speed up... learning updating
about the failure the data plane

SWIFT: Predictive Fast Rerouting

speed up... learning
about the failure

solution predict the extent
of a failure from
few messages

SWIFT: Predictive Fast Rerouting

learning

predict the extent
of a failure from
few messages

speed and precision

SWIFT: Predictive Fast Rerouting

speed up... updating
the data plane

solution

challenge

SWIFT: Predictive Fast Rerouting

speed up... updating
the data plane

solution update groups of entries
instead of individual ones

challenge

SWIFT: Predictive Fast Rerouting

updating

update groups of entries
instead of individual ones

failure model

SWIFT: Predictive Fast Rerouting

1 Predicting

out of few messages

2 Updating

groups of entries

3 Supercharging

existing systems

SWIFT: Predictive Fast Rerouting

1 Predicting

Updating

groups of entries

Supercharging

existing systems

SWIFT leverages redundant info in routing messages

to predict which links went down

BGP messages

WITHDRAW pl
WITHDRAW p2
p3 via [X, E, C, A

Prediction
module

(A,B) 0.30

(A.D) 0.70

Links failure
probability

Predictions

Links {(A,D)} is dead

The Internet is a network of >50,000 networks,
referred to as Autonomous Systems (AS)

AS20 AS30

AS10 ' swisscom

AS40

AS50 / ~—

BGP is the routing protocol
“‘glueing” the Internet together

AS20 AS30

AS10 ”

BGP sessions

AS50 / ~

Deutsche
Telekom ;I; .

AS40

ASes exchange information about
the destinations (IP addresses) they can reach

AS40

129.132.0.0/16
ETH/UNIZH Camp Net

ASes exchange information about
the destinations (IP addresses) they can reach

AS20 AS30

AS10 '

7 N
. | 129.132.0.0/16
| LPath:40
AS40
AS50

1129.132.0.0/16

[Rathi 40N
129.132.0.0/16

ETH/UNIZH Camp Net

Reachability information is propagated hop-by-hop

AS20 AS30

AS10 '

P AS40
AS50 Iy ™~

Deutsche
Telekom 'tF .

4 1129.132.0.0/16
Path: 10 40

129.132.0.0/16
ETH/UNIZH Camp Net

Reachability information is propagated hop-by-hop

AS20

| | AS30
129.132.0.0/16
Path:1040
Y.
129.132.0.0/16 A\
_Path: 501040 |,
... . AS4 O
AS50 /
Deutsche
Telekom '11' -
129.132.0.0/16

ETH/UNIZH Camp Net

UPDATES
WITHDRAWS 10k

The stream of messages following a disruption contain
redundant information about the failed resource

The stream of messages following a disruption contain
redundant information about the failed resource

enables prediction

Feedback comes in two forms:
positive or negative

positive unaffected prefixes are routed on paths which

do not contain the failed link

negative affected prefixes were routed on paths which

did contain the failed link

UPDATES
WITHDRAWSs

10k

affected prefixes:
(12567) RK%
(12568) nkE

unaffected prefixes:

(12)
(125)

affected prefixes:
(12567) RK%
(12568) HIIE

l order

unaffected prefixes:

(12)
(125)

After receiving messages pertaining to one path,
the failure can be located anywhere alongside it

candidates set: affected prefixes:

(1,2); (2,5); (5,06); (6,7) (12567) R

After receiving messages pertaining to multiple paths,
the failure is likely located in their intersections

candidates set: affected prefixes:

(12567)
(1,2); (2,5); (5,6); (1256 8)

Not receiving messages pertaining to given links
is a strong indication that they are still up

candidates set:

unaffected prefixes:

(2,5); (5,6); (12)
(5,6) (125)

candidates set:

prediction (5,6)

SWIFT predicts link failures in two stages:
burst detection and link identification

Step 1
burst detection

Step 1 Whenever the frequency of WITHDRAWALs is higher
burst detection than a threshold (e.g., >99t percentile)

Step 1 Whenever the frequency of WITHDRAWALs is higher
burst detection than a threshold (e.g., >99th percentile)

Step 2

link identification

Whenever the frequency of WITHDRAWALs is higher
than a threshold (e.g., >99t percentile)

Return the link(s) that maximizes
the weighted geometric mean between:

WS(t) PS(l,t)

fraction of withdraws proportion of prefixes
crossing link / withdrawn on link /

UPDATES
WITHDRAWSs

link

(1,2)
(2,5)
(5,6)
(6,7)
(6,8)

other

WS

PS

FS

UPDATES
WITHDRAWSs

10k

link

(1,2)
(2,5)
(5,6)
(6,7)
(6,8)

other

WS PS
1 91
1 .95
1 1
.5 1
.5 1
0 0

FS

.95
.97

From 1’s perspective, 50% of the prefixes appearing
in the messages were going over (6,7) and (6,8)

10k
!
(7
0
e (6,7) .5
t

(6,8) 5
10k

From 1’s perspective, 100% of the prefixes
going over (6,7) and (6,8) are down

10k
:
(7
(5

(6,8)

e (6,7)
T

10k

—]

Only the failed link has 1 for both metric

UPDATES
WITHDRAW:S

10k

link

(1,2)
(2,5)
(5,6)
(6,7)
(6,8)

other

WS PS
1 91
1 .95
1 1
.5 1
.5 1
0 0

FS

.95
.97

When run on the full burst,
SWIFT is guaranteed to find the right link

Theorem If all ASes inject at least one prefix,
SWIFT will always pinpoint the failed link

When run on the full burst

not that helpful...

Yet, SWIFT work well
in realistic scenarios

Messages tend to be interleaved

providing diverse path information early on

SWIFT compensates for lack of information,
by being overly cautious and iterative

Returns set of links failures

all links with high fit score

Runs multiple times sequentially

after 2.5k, 5k, 7.5k, 10k,... messages

—— Returns set of links failures

all links with high fit score

—— Runs multiple times sequentially

after 2.5k, 5k, 7.5k, 10k,... messages

— |ncrease the number of false positives

the amount of wrongly rerouted traffic

False positives are not an issue!

26 seconds VS 129 600 seconds

allowed downtime allowed free-riding
for 99.999% on a peering link

SWIFT prediction are accurate

early on in the burst

dataset

methodology

2619 large bursts identified in July 2016

acts as “ground truth”

iteratively run SWIFT prediction

on a growing subset of each burst

compare SWIFT prediction
with the actual WITHDRAWS

SWIFT predicts ~90% of the withdrawn prefixes

based on only 2.5k messages

5.0K

/7.5K

10K

87.50%

89.70%

92.99%

95.40%

75th

99.10%

98.80%

99.10%

99.60%

90th

99.99%

98.99%

99.99%

99.99%

5.0K

/7.5K

10K

0.2x

0.2x

0.2x

0.4x

SWIFT reroutes few non-disrupted prefixes

75th

1.4x

1.6x

1.8X

2.8X

90th

8.9x

/.2X

/.8X

9.6X

SWIFT: Predictive Fast Rerouting

Predicting

out of few messages

2 Updating

Supercharging

existing systems

Upon a prediction, SWIFT needs to update
the corresponding forwarding entries

R1’s Forwarding Table

1 1.0.0.0/24
2 1.0.1.0/16

300k 100.0.0.0/8

600k 200.99.0.0/24

Upon the prediction of (R2, R4) going down,
300k entries have to be updated to 1

R1’s Forwarding Table

1 1.0.0.0/24 0
2 1.0.1.0/16 0
300k 100.0.0.0/8 0

600k 200.99.0.0/24 0

forwarding entries
going over the failed link

1 1.0.0.0/24 0
2 1.0.1.0/16 0
300k 100.0.0.0/8 0

600k 200.99.0.0/24 0

The problem is that
forwarding tables are flat

Entries do not share any information

even if they are identical

Upon failure, all of them have to be updated

inefficient, but also unnecessary

The problem is that
forwarding tables are flat

Entries do not share any information

even if they are identical

Upon failure, all of them have to be updated

inefficient, but also unnecessary

Solution: introduce a hierarchy

as with any problem in CS...

Replace this...

R1’s Forwarding Table

IP prefix Next-Hop
1 1.0.0.0/24 0 oort 0
2 1.0.1.0/16 0 >
—l
300k 100.0.0.0/8 0 port 1

600k 200.99.0.0/24 0

... with this

600k

Mapping table
IP prefix Pointer
1 1.0.0.0/24
2 1.0.1.0/16
—
300k 100.0.0.0/8

200.99.0.0/24

—

Pointer table

Pointer

SWIFT computes the pointer attached to each prefix
in function of the links it crosses in the Internet

Pointer

Pointer

pointer

5***** indicates a prefix
crossing the link (1,2)

*F**** indicates a prefix
crossing the link (2,4)

Upon the predicted failure of link (2,4),
SWIFT add a rerouting rules for Ox*F**** to port 1

Pointer NH
1
0

0

This rule automatically reroutes 300k prefixes

Mapping table

1
2

300k

IP prefix

1.0.0.0/24
1.0.1.0/16

100.0.0.0/8

Pointer
Pointer table
Ox5FA48B
Ox5FA4AB Pointer NH
—
Ox5FA4CD

O O O =

port O
—l

—
port 1

Pointers are encoded on 48 bits, SWIFT therefore
reduce the graph before encoding the links

#1

#2

Ignore any link seeing less than 1.5k pfxes

anything less converges fast enough already

Ignore link far away from the SWIFTed node
less likely to create large bursts of WITHDRAWS

% of encoded
prefix

100

90

80

65

| | | |
13 18 23 28

of bits used in the encoding

|
33

SWIFT encoding enables to reroute
96% of the prefixes with only 18 bits

% of encoded 100 -~
prefix 96 -—
80 —
65 -—

| | | | | |
8 13 18 23 28 33

of bits used in the encoding

SWIFT: Predictive Fast Rerouting

Predicting

out of few messages

Updating

groups of entries

3 Supercharging

We implemented a full SWIFT prototype
and boosted existing routers’ convergence

To boost the performance of a router,
we augmented its control-plane and data-plane

@ peer
eBGP
sessions beer,
=< =

peern

IP router

In the data-plane, we insert a SDN switch
to implement the pointer table

IP router

In the control-plane, we insert a controller to
maintain BGP state, predicts failures and drive the switch

eBGP
sessions
—

SWIFT controller

BGP 4

controller ‘\\
/ 1 REST API

SWIFT SDN & ARP
<>

engine controller
| A4

\ ARP SDN API
» v

% packet loss

100

80

60

40

20

|
20

| |
40 60

time (sec)

|
80

100

% packet loss

100

80

60

40

20

remote
failure

| |
30 60

time (sec)

80

100

SWIFT reduces the convergence time of the Cisco router
from ~50s to max 3s

% packet loss 100
80 -
62 -ﬁﬁ
ol
Jq++
40 _ *
* g
x ++_F|’_H_
20 - B,
SWIFT -
0 - ek oA Y
| | | | |
0 30 60 78 100

time (sec)

Predicting

Updating

Supercharging

SWIFT significantly speeds up router convergence
upon frequent remote Internet failure

SWIFT predictions are quick and accurate

close to 90% accuracy early on in the burst

SWIFT encoding is efficient

fast converge 95% of the predicted prefixes

SWIFT works in practice

95% speed-up compared to Cisco routers

