
SWIFT

Predictive Fast Reroute upon Remote BGP Disruptions

Laurent Vanbever

Networked Systems, D-ITET

December 5 2016

D-INFK Lunch Seminar

The Fortune Teller by Caravaggio, 1595. Louvre, Paris

25.9 seconds

maximum monthly downtime

under a 99.999% SLA

25.9 seconds

>2.5 minutes

maximum monthly downtime

under a 99.999% SLA

25.9 seconds

>2.5 minutes

maximum monthly downtime

under a 99.999% SLA

25.9 seconds

measured router downtime

upon large Internet failures

3 seconds

>2.5 minutes

maximum monthly downtime

under a 99.999% SLA

25.9 seconds

measured router downtime

upon large Internet failures

SWIFT measured downtime

upon large Internet failures

>2.5 minutes

maximum monthly downtime

under a 99.999% SLA

25.9 seconds

measured router downtime

upon large Internet failures

3 seconds

IP routers are slow to converge

upon remote link and node failures

R1

R1

R3

R2

0

1

R1 prefers to send traffic via R2 when possible,

as it is much cheaper than via R3

0

1
R1

R3

R2 $

$$$

1

R3 $$$

R1 forwards traffic to R2

for any destination R2 advertises

0

R1

R2 $ preferred

R5

R4

R6

R1

R3

R2

0

1

0

1

300k

300k

300k

300k

600k

600k

R5

R4

R6

R1

R3

R2

IP prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

600k

0

…… …

Next-Hop

300k
…… …

100.0.0.0/8

R1’s Forwarding Table

0

0

0

0

1

300k

300k

300k

300k

600k

600k

R5

R4

R6

R1

R3

R2

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

600k

0

Next-Hop

300k
…… …

100.0.0.0/8

R1’s Forwarding Table

0

0

0

0

1

What if R4 fails?

R5

R4

R6

R1

R3

R2IP prefix

…… …

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

600k

0

Next-Hop

300k
…… …

100.0.0.0/8

R1’s Forwarding Table

0

0

0

0

1

R5

R6

R1

R3

R2
300k

WITHDRAWs

R2 sends a burst of 300k routing messages

withdrawing the routes learned from R4

R4

…… …

IP prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

600k

0

Next-Hop

300k
…… …

100.0.0.0/8

R1’s Forwarding Table

0

0

0

0

1

R5

R6

R1

R3

R2
300k

WITHDRAWs

R1 receives the messages one-by-one and

updates its forwarding table entry-by-entry

…… …

IP prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

600k

1

Next-Hop

300k
…… …

100.0.0.0/8

R1’s Forwarding Table

0

0

0

0

1
R1

R3

R2
300k

WITHDRAWsIP prefix

…… …
R5

R6

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

600k

1

Next-Hop

300k
…… …

100.0.0.0/8

R1’s Forwarding Table

1

0

0

0

1
R1

R3

R2
300k

WITHDRAWsIP prefix

…… …
R5

R6

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

600k

1

Next-Hop

300k
…… …

100.0.0.0/8

R1’s Forwarding Table

1

1

0

0

1
R1

R3

R2
300k

WITHDRAWsIP prefix

…… …
R5

R6

Learning

about the failure

Internet convergence

Updating

 forwarding entries

a two-phase process

Phase 1 Phase 2

Internet convergence

a two-phase process

both of which are terribly slow

Learning

about the failure

Internet convergence

Updating

 forwarding entries

a two-phase process

Phase 1 Phase 2

Phase 2Phase 1

Internet convergence

a two-phase process

Learning

about the failure

Updating

 forwarding entries

dataset a month (July’16) worth of Internet updates

from ~200 routers scattered around the globe

methodology detect the beginning and the end of a burst

using a 10 sec sliding window

We measured how long it takes for large bursts of

BGP updates to propagate in the Internet

0-2 2-8 8-15 15-30 30-60 60-90
90-120

120-200
>200

1101 809
308 247

92

21 14 18 9

106

105

104

103

103

102

101

burst duration (sec)

burst size

nb of bursts

0-2 2-8 8-15 15-30 30-60 60-90
90-120

120-200
>200

1101 809
308 247

92

21 14 18 9

106

105

104

103

103

102

101

burst duration (sec)

burst size

nb of bursts

We found a total of 2619 bursts over the month

0-2 2-8 8-15 15-30 30-60 60-90
90-120

120-200
>200

1101 809
308 247

92

21 14 18

106

105

104

103

103

102

101

burst duration (sec)

burst size

nb of bursts

15% of the bursts takes more than 15s to be learned

9

0-2 2-8 8-15 15-30 30-60 60-90
90-120

120-200
>200

1101 809
308 247

92

21 14 18

106

104

103

103

102

101

burst duration (sec)

burst size

9

nb of bursts

105

Slow-to-learn bursts tend to be big

0-2 2-8 8-15 15-30 30-60 60-90
90-120

120-200
>200

1101 809
308 247

92

21 14 18

106

104

103

103

102

101

burst duration (sec)

burst size

9

nb of bursts

~10% of the bursts contained more than 100k prefixes

105

Internet convergence

a two-phase process

Learning

about the failure

Updating

 forwarding entries

Phase 1 Phase 2

25

We measured how long it takes for recent routers

to update a growing number of forwarding entries

ETH recent routers

deployed

Cisco Nexus 7k

106 CHF (fully loaded)

update
time (s)

of prefixes

0.1

1

150

10

1K 10K5K 50K 100K 200K 300K 500K400K

1K 5K 10K 50K 100K 300K 500K
.1

1

10

100
150

of prefixes

0.1

1

150

10

1K 10K5K 50K 100K 200K 300K 500K400K

worst-case
update
time (s)

median case

1K 5K 10K 50K 100K 300K 500K
.1

1

10

100
150

of prefixes

0.1

1

150

10

1K 10K5K 50K 100K 200K 300K 500K400K

worst-case
update
time (s)

1K 5K 10K 50K 100K 300K 500K
.1

1

10

100
150

of prefixes

0.1

1

150

10

1K 10K5K 50K 100K 200K 300K 500K400K

~2.5 min.
Traffic can be lost for several minutes

update
time (s)

Learning

about the failure

Internet convergence

Updating

 forwarding entries

a two-phase process

Phase 1 Phase 2

Internet convergence

a two-phase process

prefix-based

and hence, slow

Learning

about the failure

Updating

 forwarding entries

Phase 1 Phase 2

Convergence times are only gonna get worse

as the Internet continues to grow (*)

(*) http://www.cidr-report.org/

Joint work with: Thomas Holterbach, Alberto Dainotti, Stefano Vissicchio

SWIFT : Predictive Fast Rerouting

learning

about the failure

speed up…

SWIFT : Predictive Fast Rerouting

updating

the data plane

learning

about the failure

solution predict the extent

of a failure from

few messages

speed up…

SWIFT : Predictive Fast Rerouting

learning

about the failure

solution predict the extent

of a failure from

few messages

speed and precisionchallenge

speed up…

SWIFT : Predictive Fast Rerouting

learning

about the failure

updating

the data plane

solution predict the extent

of a failure from

few messages

speed and precisionchallenge

speed up…

SWIFT : Predictive Fast Rerouting

learning

about the failure

updating

the data plane

solution predict the extent

of a failure from

few messages

update groups of entries

instead of individual ones

speed and precisionchallenge

speed up…

SWIFT : Predictive Fast Rerouting

learning

about the failure

updating

the data plane

solution predict the extent

of a failure from

few messages

update groups of entries

instead of individual ones

speed and precision failure modelchallenge

speed up…

SWIFT : Predictive Fast Rerouting

out of few messages
Predicting1

Updating
groups of entries

2

Supercharging
existing systems

3

SWIFT : Predictive Fast Rerouting

out of few messages
Predicting1

Updating
groups of entries

Supercharging
existing systems

SWIFT : Predictive Fast Rerouting

SWIFT leverages redundant info in routing messages

to predict which links went down

(A,B) 0.30

(A,D) 0.70
……

Links failure
probability

WITHDRAW p1

WITHDRAW p2

…

Links {(A,D)} is dead

Predictions

BGP messages

p3 via [X, E, C, A]

Prediction

module

AS10

AS20 AS30

AS40

AS50

The Internet is a network of >50,000 networks,

referred to as Autonomous Systems (AS)

AS10

AS20 AS30

AS40

AS50

BGP sessions

BGP is the routing protocol

“glueing” the Internet together

129.132.0.0/16  
ETH/UNIZH Camp Net

ASes exchange information about

the destinations (IP addresses) they can reach

AS40

AS10

AS20 AS30

AS50

129.132.0.0/16  
ETH/UNIZH Camp Net

 129.132.0.0/16

 Path: 40

 129.132.0.0/16

 Path: 40

ASes exchange information about

the destinations (IP addresses) they can reach

AS40

AS10

AS20 AS30

AS50

129.132.0.0/16  
ETH/UNIZH Camp Net

 129.132.0.0/16

 Path: 10 40

Reachability information is propagated hop-by-hop

AS40

AS10

AS20 AS30

AS50

129.132.0.0/16  
ETH/UNIZH Camp Net

 129.132.0.0/16

 Path: 50 10 40

 129.132.0.0/16

 Path: 10 40

Reachability information is propagated hop-by-hop

AS40

5 61

4

2

3
7

8

5 61

4

2

10k

10k

3
7

8

1k

1k

1k

1k

5 61

4

2

3
7

8

1k

1k

10k

10k

1k

1k

5 61

4

2

3
7

8

1k

1k

10k

10k

1k

1k

51

4

2

7

8

1k

1k

6

3

WITHDRAWs

UPDATES
10k

10k

1k

1k

The stream of messages following a disruption contain

redundant information about the failed resource

enables prediction

The stream of messages following a disruption contain

redundant information about the failed resource

Feedback comes in two forms:

positive or negative

positive

negative affected prefixes were routed on paths which

did contain the failed link

unaffected prefixes are routed on paths which

do not contain the failed link

51

4

2

7

8

1k

1k

6

3

WITHDRAWs

UPDATES

affected prefixes:

(1 2 5 6 7)

(1 2 5 6 8)

unaffected prefixes:

(1 2)

10k

10k

10k

1k

1k

1k

1k(1 2 5)

10k

affected prefixes:

(1 2 5 6 7)

(1 2 5 6 8)

unaffected prefixes:

(1 2)

10k

1k

1k(1 2 5)

10k
order

(1 2 5 6 7)

(1 2 5 6 8)

unaffected prefixes:

(1 2)

10k

1k

1k(1 2 5)

10k

candidates set:

(1,2); (2,5); (5,6); (6,7)

After receiving messages pertaining to one path,

the failure can be located anywhere alongside it

affected prefixes:

(1 2 5 6 7)

(1 2 5 6 8)

unaffected prefixes:

(1 2)

10k

1k

1k(1 2 5)

10k(1,2); (2,5); (5,6);

(1,2); (2,5); (5,6); (6,7)

After receiving messages pertaining to multiple paths,

the failure is likely located in their intersections

candidates set: affected prefixes:

affected prefixes:

(1 2 5 6 7)

(1 2 5 6 8)

unaffected prefixes:

(1 2)

10k

1k

1k(1 2 5)

10k

(2,5); (5,6);

(5,6)

(1,2); (2,5); (5,6);

(1,2); (2,5); (5,6); (6,7)

Not receiving messages pertaining to given links

is a strong indication that they are still up

candidates set:

affected prefixes:

(1 2 5 6 7)

(1 2 5 6 8)

unaffected prefixes:

(1 2)

10k

1k

1k(1 2 5)

10k

(2,5); (5,6);

(5,6)

(1,2); (2,5); (5,6);

(1,2); (2,5); (5,6); (6,7)

candidates set:

prediction

SWIFT predicts link failures in two stages:

burst detection and link identification

Step 1

burst detection

Whenever the frequency of WITHDRAWALs is higher

than a threshold (e.g., >99th percentile)

Step 1

burst detection

Whenever the frequency of WITHDRAWALs is higher

than a threshold (e.g., >99th percentile)

Step 1

burst detection

Step 2

link identification

Withdrawal share Path share

WS(l, t) PS(l, t)

Whenever the frequency of WITHDRAWALs is higher

than a threshold (e.g., >99th percentile)

Return the link(s) that maximizes

the weighted geometric mean between:

fraction of withdraws

crossing link l

proportion of prefixes

withdrawn on link l

Step 1

burst detection

Step 2

link identification

(1,2)

(2,5)

(5,6)

other

link WS PS FS

(6,7)

(6,8)

51

4

2

7

8

1k

1k

6

3

WITHDRAWs

UPDATES
10k

10k

1k

1k

(1,2)

(2,5)

(5,6)

other

link WS PS

1

1

1

0

.91

.95

1

0

FS

.95

.97

1

0

(6,7) 1 .7

(6,8) 1

.5

.5 .7

51

4

2

7

8

1k

1k

6

3

WITHDRAWs

UPDATES
10k

10k

1k

1k

(1,2)

(2,5)

(5,6)

other

link PS

1

1

1

0

.91

.95

1

0

FS

.95

.97

1

0

1 .7

1 .7

51

4

2

1k

1k

3

WITHDRAWs

UPDATES

1k

1k

WS

(6,7)

(6,8)

.5

.5

7

8

6

10k

10k

From 1’s perspective, 50% of the prefixes appearing

in the messages were going over (6,7) and (6,8)

WS

.5

.5

(1,2)

(2,5)

(5,6)

other

link

1

1

1

0

.91

.95

1

0

FS

.95

.97

1

0

.7

.7

51

4

2

1k

1k

3

WITHDRAWs

UPDATES

1k

1k (6,7)

(6,8)

7

8

6

10k

10k

From 1’s perspective, 100% of the prefixes

going over (6,7) and (6,8) are down

PS

1

1

(1,2)

(2,5)

(5,6)

other

link WS PS

1

1

1

0

.91

.95

1

0

FS

.95

.97

1

0

(6,7) 1 .7

(6,8) 1

.5

.5 .7

51

4

2

7

8

1k

1k

6

3

WITHDRAWs

UPDATES
10k

10k

1k

1k

Only the failed link has 1 for both metric

If all ASes inject at least one prefix,

SWIFT will always pinpoint the failed link

Theorem

When run on the full burst,

SWIFT is guaranteed to find the right link

not that helpful…

When run on the full burst

SWIFT is guaranteed to find the right link

Yet, SWIFT work well

in realistic scenarios

Messages tend to be interleaved

providing diverse path information early on

Intuition

SWIFT compensates for lack of information,

by being overly cautious and iterative

Returns set of links failures

all links with high fit score

Runs multiple times sequentially

after 2.5k, 5k, 7.5k, 10k,… messages

Returns set of links failures

all links with high fit score

Runs multiple times sequentially

after 2.5k, 5k, 7.5k, 10k,… messages

Increase the number of false positives

the amount of wrongly rerouted traffic

Good news

False positives are not an issue!

26 seconds

allowed downtime

for 99.999%

129 600 secondsvs

allowed free-riding

on a peering link

SWIFT prediction are accurate

early on in the burst

dataset 2619 large bursts identified in July 2016

acts as “ground truth”

methodology iteratively run SWIFT prediction

on a growing subset of each burst

compare SWIFT prediction

 with the actual WITHDRAWs

2.5K

5.0K

7.5K

10K

50th 75th 90th

87.50% 99.10% 99.99%

89.70% 98.80% 98.99%

92.99% 99.10% 99.99%

95.40% 99.60% 99.99%

SWIFT predicts ~90% of the withdrawn prefixes

based on only 2.5k messages

2.5K

5.0K

7.5K

10K

50th 75th 90th

0.2x 1.4x 8.9x

0.2x 1.6x 7.2x

0.2x 1.8x 7.8x

0.4x 2.8x 9.6x

SWIFT reroutes few non-disrupted prefixes

despite not being optimized for it

out of few messages
Predicting

Updating
groups of entries

2

Supercharging
existing systems

SWIFT : Predictive Fast Rerouting

Upon a prediction, SWIFT needs to update

the corresponding forwarding entries

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

600k

0

…… …
300k

…… …
100.0.0.0/8

R1’s Forwarding Table

0

0

0

0

1

300k

300k

300k

300k

600k

600k

R5

R4

R6

R1

R3

R2

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

600k

0

…… …
300k

…… …
100.0.0.0/8

0

0

0

0

1

300k

300k

300k

300k

600k

600k

R5

R4

R6

R1

R3

R2R1’s Forwarding Table

Upon the prediction of (R2, R4) going down,

300k entries have to be updated to 1

1.0.0.0/24

200.99.0.0/24

1

2

600k

0

…… …
300k

…… …
100.0.0.0/8

forwarding entries

going over the failed link

0

0

0

0

1 300k

300k

300k

600k

600k

R5

R6

R1

R3

R2
300k

R4

1.0.1.0/16

Upon failure, all of them have to be updated

inefficient, but also unnecessary

Entries do not share any information

even if they are identical

The problem is that

forwarding tables are flat

Upon failure, all of them have to be updated

inefficient, but also unnecessary

Entries do not share any information

even if they are identical

Solution: introduce a hierarchy

as with any problem in CS…

The problem is that

forwarding tables are flat

port 0

port 1

IP prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

600k

0

…… …

Next-Hop

300k
…… …

100.0.0.0/8

R1’s Forwarding Table

0

0

0

Replace this…

Pointer NH

0x5FA48B 0

port 0

port 1

Pointer table

IP prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

600k

…… …

Pointer

300k
…… …

100.0.0.0/8

0x5FA48B

0x5FA4CD

0x5B848A

0

Mapping table

0

… with this

0x5FA432

0x5FA448
… …

0x5FA4AB

NH

SWIFT computes the pointer attached to each prefix

in function of the links it crosses in the Internet

0

port 0

port 1

IP prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

600k

…… …
300k

…… …
100.0.0.0/8 0x5FA4CD

0x5B848A

0

Mapping table

0

0x5FA432

0x5FA448
… …

0x5FA4AB

Pointer table

0x5FA48B

0x5FA48B

Pointer

Pointer

pointer 0x5FA48B

5***** indicates a prefix

crossing the link (1,2)

pointer 0x5FA48B

pointer 0x5FA48B

*F**** indicates a prefix

crossing the link (2,4)

Pointer table

Upon the predicted failure of link (2,4),

SWIFT add a rerouting rules for 0x*F**** to port 1

port 0

port 1

IP prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

600k

…… …

Pointer

300k
…… …

100.0.0.0/8

0x5FA48B

0x5FA448

0x5F848A

Mapping table

0x5FA432 Pointer NH

0x*F**** 1

00x5FA432
… …

0x5FA48B 0

This rule automatically reroutes 300k prefixes

port 0

port 1

IP prefix

1.0.0.0/24

1.0.1.0/16

200.99.0.0/24

1

2

600k

…… …

Pointer

300k
…… …

100.0.0.0/8

0x5FA48B

0x5FA4CD

0x5B848A

Mapping table

0x5FA4AB Pointer NH

0x*F**** 1

Pointer table

0
0

0x5FA432
0x5FA448

… …

0x5FA48B 0

Pointers are encoded on 48 bits, SWIFT therefore

reduce the graph before encoding the links

Ignore any link seeing less than 1.5k pfxes

anything less converges fast enough already

Ignore link far away from the SWIFTed node

less likely to create large bursts of WITHDRAWs

Recipe #1

Recipe #2

of bits used in the encoding

8 1813 23 28

% of encoded
prefix

65

90

100

80

33

SWIFT encoding enables to reroute

96% of the prefixes with only 18 bits

1 2 3 4 5 6

65
70

75
80

85
90

95
10
0

of bits used in the encoding

8 1813 23 28

65

96
100

80

33

% of encoded
prefix

out of few messages
Predicting

Updating
groups of entries

Supercharging
existing systems

3

SWIFT : Predictive Fast Rerouting

We implemented a full SWIFT prototype

and boosted existing routers’ convergence

…

peern

peer1

peer2

IP router

eBGP
sessions

To boost the performance of a router,

we augmented its control-plane and data-plane

…

peern

peer1

peer2

In the data-plane, we insert a SDN switch

to implement the pointer table

IP router SDN
switch

In the control-plane, we insert a controller to

maintain BGP state, predicts failures and drive the switch

…

peern

peer1

peer2

IP router SDN
switch

SWIFT controller

BGP
controller

REST API

SDN & ARP
controller

SWIFT
engine

eBGP
sessions

SDN APIARP

SWIFTED

IP router

SDN

switch

SWIFT

controller

time (sec)

0

80

100

20

40

60

0 4020 60 80 100

% packet loss

time (sec)

% packet loss

0

80

100

20

40

60

0 60 80 100

remote
failure

30

0

80

100

20

40

62

0 60 78 100

SWIFT reduces the convergence time of the Cisco router

from ~50s to max 3s

30

time (sec)

Nexus

SWIFT

% packet loss

out of few messages
Predicting

Updating
groups of entries

Supercharging
existing systems

SWIFT : Predictive Fast Rerouting

SWIFT significantly speeds up router convergence

upon frequent remote Internet failure

SWIFT predictions are quick and accurate

close to 90% accuracy early on in the burst

SWIFT encoding is efficient

fast converge 95% of the predicted prefixes

SWIFT works in practice

95% speed-up compared to Cisco routers

