
Machine Learning for Networking 

What? With what? For what?

Google Networking Summit

Laurent Vanbever

Wed Oct 18 2023

nsg.ee.ethz.ch

Ceci n'est pas un réseau.

René Magritte. La trahison des images. 1929.

René Magritte. La trahison des images. 1929.

Ceci n'est pas un réseau. René Magritte. La trahison des images. 1929.

Machine Learning for Networking 

What? With what? For what?

What to train?

With what data?

For what purpose?

transformers to the rescue

fun with LLMs

big code ⨉ networking

1

2

3

Ceci n'est pas un réseau.

Machine Learning for Networking 

What? With what? For what?

What to train?

With what data?

For what purpose?

transformers to the rescue

fun with LLMs

big code ⨉ networking

1

Ceci n'est pas un réseau.

HotNets 2022

A New Hope for
Network Model Generalization
ACM HotNets 2022

Alexander Dietmüller
Siddhant Ray
Romain Jacob

Laurent Vanbever

2

Network simulation
SIGCOMM’21
[MimicNet]

What do these systems have in common?

Video streaming
NSDI’20
[Puffer]

Data-driven networking
HotNets’16
[Biases]

Video streaming,
congestion control, and
load balancing
SIGCOMM’22
[GENET]

3

What do these systems have in common?
They have the same problem setting.

MimicNet packet (drop, latency, ECN)

Puffer transmission time

GENET bitrate for next chunk

...

From past traffic ... … an ML system estimates the state
of the network to make a prediction.

4

From past traffic ...

What do these systems have in common?
They have the same problem setting. But that’s about it.

… an ML system estimates the state
of the network to make a prediction.

MimicNet packet (drop, latency, ECN)

Puffer transmission time

GENET bitrate for next chunk

...

5

ML systems in networking do not generalize.

tailored to network context & task
(e.g. predict wireless loss)

6

SO
WHAT

7

SO
WHAT

are the
consequences for
ML in networking?

8

tailored to network context & task
(e.g. predict wireless loss)

ML systems in networking do not generalize. This limits re-usability,
forcing us to repeat data collection, model design, and training.

9

Same task (predict loss) with data from

a context in situ ✓ [Puffer]

tailored to network context & task
(e.g. predict wireless loss)

ML systems in networking do not generalize. This limits re-usability,
forcing us to repeat data collection, model design, and training.

10

Same task (predict loss) with data from

a context in situ ✓ [Puffer]

a similar context (wireless) ✓/✗ [GENET]

tailored to network context & task
(e.g. predict wireless loss)

ML systems in networking do not generalize. This limits re-usability,
forcing us to repeat data collection, model design, and training.

11

Same task (predict loss) with data from

a context in situ ✓ [Puffer]

a similar context (wireless) ✓/✗ [GENET]

a different context (wired) ✗ [Biases]

tailored to network context & task
(e.g. predict wireless loss)

ML systems in networking do not generalize. This limits re-usability,
forcing us to repeat data collection, model design, and training.

12

Same task (predict loss) with data from

a context in situ ✓ [Puffer]

a similar context (wireless) ✓/✗ [GENET]

a different context (wired) ✗
[Biases]

multiple contexts (both) ✗

tailored to network context & task
(e.g. predict wireless loss)

ML systems in networking do not generalize. This limits re-usability,
forcing us to repeat data collection, model design, and training.

13

Same task (predict loss) with data from

a context in situ ✓ [Puffer]

a similar context (wireless) ✓/✗ [GENET]

a different context (wired) ✗
[Biases]

multiple contexts (both) ✗

Different task (e.g. predict delay)

 ✗ (requires a completely new model and data)

tailored to network context & task
(e.g. predict wireless loss)

ML systems in networking do not generalize. This limits re-usability,
forcing us to repeat data collection, model design, and training.

14

◆ optimal performance

◆ for multiple contexts and different tasks

◆ without starting from scratch every time ?

Is there no way to get

15

A New Hope for
Network Model Generalization

16NLP: Language Processing; CV: Computer Vision; Images generated by OpenAI Dall-E 2.

CV

NLP

Networking

17

In NLP and CV, Transformer-based architectures
generalize by learning to infer sequence context.

NLP: Natural Language Processing; CV: Computer Vision; Images generated by OpenAI Dall-E 2.

18NLP: Natural Language Processing; CV: Computer Vision; Images generated by OpenAI Dall-E 2.

Dall-E 2
input: (text)

output: (generated image)

In NLP and CV, Transformer-based architectures
generalize by learning to infer sequence context.

19

Stick to that hand.

NLP: Natural Language Processing; CV: Computer Vision; Images generated by OpenAI Dall-E 2.

Hand me that stick!
Dall-E 2
input: (text)

output: (generated image)

In NLP and CV, Transformer-based architectures
generalize by learning to infer sequence context.

20

Stick to that hand.

NLP: Natural Language Processing; CV: Computer Vision; Images generated by OpenAI Dall-E 2.

Hand me that stick!
Dall-E 2
input: (text)

output: (generated image)

In NLP and CV, Transformer-based architectures
generalize by learning to infer sequence context.

21

Stick to that hand.

NLP: Natural Language Processing; CV: Computer Vision; Images generated by OpenAI Dall-E 2.

wireless

wire
d

Hand me that stick!
Dall-E 2
input: (text)

output: (generated image)

In NLP and CV, Transformer-based architectures
generalize by learning to infer sequence context.

22

◆ optimal performance

◆ for multiple contexts and different tasks

◆ without starting from scratch every time ?

Maybe we can get

23

A general pre-trained Transformer encoder
can be combined with specific fine-tuned decoders.

24

From past
traffic ...

… a large and general
Transformer learns

dynamics in context ...

sequence of encoded packets
each packet augmented
with inferred context

sequence of packets

A general pre-trained Transformer encoder
can be combined with specific fine-tuned decoders.

25

From past
traffic ...

… a large and general
Transformer learns

dynamics in context ...

… while small and
specific decoders
make predictions.

A general pre-trained Transformer encoder
can be combined with specific fine-tuned decoders.

sequence of encoded packets
each packet augmented
with inferred context

sequence of packets

26

◆ optimal performance

◆ for multiple contexts and different tasks

◆ without starting from scratch every time !

There is a way to get

27

We cannot just copy an NLP Transformer:
a Network Traffic Transformer (NTT) must handle network challenges!

28

We cannot just copy an NLP Transformer:
a Network Traffic Transformer (NTT) must handle network challenges!

Challenge #1
Avoid packet features tailored to a specific task.

Challenge #2
Process long sequences without losing detail.

Challenge #3
Learn contextual dynamics during pre-training.

29

We cannot just copy an NLP Transformer:
a Network Traffic Transformer (NTT) must handle network challenges!

Challenge #1
Avoid packet features tailored to a specific task.
→ learning features

Challenge #2
Process long sequences without loosing detail.
→ aggregate past packets hierarchically

Challenge #3
Learn contextual dynamics during pre-training.
→ pre-train to predict end-to-end delay

30

In simulation, we observe first evidence
that networking could benefit from pre-trained models as well.

context
30 senders and
a single shared
bottleneck

task
delay prediction

We pretrain, ...

31

In simulation, we observe first evidence
that networking could benefit from pre-trained models as well.

context
30 senders and
a single shared
bottleneck

task
delay prediction

with different contexts
indep. bottlenecks with
unobserved cross-traffic

We pretrain, ... … fine-tune, ...

32

In simulation, we observe first evidence
that networking could benefit from pre-trained models as well.

context
30 senders and
a single shared
bottleneck

task
delay prediction

with different contexts
indep. bottlenecks with
unobserved cross-traffic

with another task
predict message
completion time

We pretrain, ... … fine-tune, ...

33

In simulation, we observe first evidence
that networking could benefit from pre-trained models as well.

context
30 senders and
a single shared
bottleneck

task
delay prediction

with different contexts
indep. bottlenecks with
unobserved cross-traffic

with another task
predict message
completion time

… and find that we:

◆ get equal or better performance

◆ with less training time

compared to starting from scratch.

We pretrain, ... … fine-tune, ...

34

In simulation, we observe first evidence
that networking could benefit from pre-trained models as well.

context
30 senders and
a single shared
bottleneck

task
delay prediction

with different contexts
indep. bottlenecks with
unobserved cross-traffic

with another task
predict message
completion time

… and find that we:

◆ get equal or better performance

◆ with less training time

compared to starting from scratch.

We pretrain, ... … fine-tune, ...

35

NTT may generalize.
What next?

36

Our simulation results are promising, and it is time
to use and evaluate NTT-based models in the real-world.

Re-create existing models based on NTT,
collecting new data where needed.

37

Our simulation results are promising, and it is time
to use and evaluate NTT-based models in the real-world.

Re-create existing models based on NTT,
collecting new data where needed.

Create new models based-on NTT.

<your name here>

38

Real-world applications will reveal all limits, but there
are clear steps to refine the NTT design.

39

Real-world applications will reveal all limits, but there
are clear steps to refine the NTT design.

How can we represent any
combination of headers?

40

Real-world applications will reveal all limits, but there
are clear steps to refine the NTT design.

How can we represent any
combination of headers?

Which aggregation levels cover
all significant network interactions?

Machine Learning for Networking 

What? With what? For what?

What to train?

With what data?

For what purpose?

transformers to the rescue

fun with LLMs

big code ⨉ networking

2

Ceci n'est pas un réseau.

HotNets 2022

10

Today, we only have a few gold nuggets of network data available

Picture: https://www.scienceimage.csiro.au/image/10458

MAWI

Intrusion Detection
Evaluation Dataset

(CIC-IDS2017)

RIPE Atlas

CAIDA

https://www.scienceimage.csiro.au/image/10458

11

We believe there exists an entire gold mine/pile of network data

Picture: https://labs.openai.com/s/zD0NTe1h8FPJPCsjSlkZvKMv 
 

https://labs.openai.com/s/zD0NTe1h8FPJPCsjSlkZvKMv

12

We believe there exists an entire gold mine/pile of network data

Picture: https://labs.openai.com/s/zD0NTe1h8FPJPCsjSlkZvKMv 
Numbers: https://octoverse.github.com/ 
 https://en.wikipedia.org/wiki/Timeline_of_GitHub

20222008

0

338M

GitHub 
repositories

year

https://labs.openai.com/s/zD0NTe1h8FPJPCsjSlkZvKMv
https://octoverse.github.com/
https://en.wikipedia.org/wiki/Timeline_of_GitHub

13

In order to tap into this gold mine, 

we have to bridge the gap from static text/code to actual network data

14

In order to tap into this gold mine, 

we have to bridge the gap from static text/code to actual network data

Extracts high-level traffic insights

Static code analysis Analyze usage of network functions

Generates live traffic which reacts to network events

Running the code Compile and run each open-source project

??? The next crazy idea

15

In order to tap into this gold mine, 

we have to bridge the gap from static text/code to actual network data

Extracts high-level traffic insights

Static code analysis Analyze usage of network functions

Generates live traffic which reacts to network events

Running the code Compile and run each open-source project

??? The next crazy idea

16

However, executing arbitrary open-source projects is challenging

Arbitrary code, language and APIs

Arbitrary code How do we build the projects?

Missing commands, dependencies and support

Missing documentation How do we run the projects?

Unexpected crashes, inputs and runtime

Unexpected errors How do we handle bugs and errors?

17

We leverage the rise of automation frameworks 

which allow to compile and run arbitrary code

18

We leverage the rise of automation frameworks 

which allow to compile and run arbitrary code

Contain all the code and its dependencies

Docker containers Are a standalone, executable package

19

We leverage the rise of automation frameworks 

which allow to compile and run arbitrary code

Contain all the code and its dependencies

Docker containers Are a standalone, executable package

A single command builds and starts all of them

Orchestration files Define how multiple containers are configured

20

338M repositories available

21

338M repositories

> 2M orchestration files

found via GitHub 
API queries

available

orchestrable

22

338M repositories

> 2M orchestration files

found via GitHub 
API queries

so far, 6 VMs running 
for ~9 months

available

> 74k orchestration files

orchestrable

traffic-generating

23

Our vision is to combine big data and container solutions  

to generate representative, live network traffic

with respect to a 
given user specification

24

Our vision is to combine big data and container solutions  

to generate representative, live network traffic

25

Our vision is to combine big data and container solutions  

to generate representative, live network traffic

with respect to a 
given user specification

traffic/applications that
react to network events

Example specification

30

Generating network traffic from millions of code repositories HotNets ’22, November 14–15, 2022, Austin, TX, USA

O
FF

L
IN

E
PH

A
SE

§3
L

IV
E

T
R

A
FF

IC
G

E
N

.§
2

Big Traffic DB
> 74k repositories
> 345M packets
as of Oct. 2022Traffic Specification

generate web traffic
from h1 to h2
with 100 Mbps ;

generate database traffic
from h3 to external
with 50 Mbps
using > 5 flows ;

Project Selection
2⇥ Project #5:
100 Mbps web traffic

Projects #7 and #18:
50 Mbps database
traffic using 7 flows

Live Traffic Generation

h1

h2

h3

external

50 Mbps

100 Mbps

O
rc

he
st

ra
tio

n
La

ye
r

#5

#5

#7

#18

Running projects User network

Traffic Statistics & Behavior Analysis
ID Function
21 database
22 web server
23 client for 21, 22% of projects

#
of

flo
w

s

Project Search

docker-compose*.yml

! Found > 2.000.000 files
in 433.769 repositories.

Project Execution

21 22

23
VM traffic

trace

Figure 1: DYNAMO leverages the abundance of open-source projects to build the Big Traffic database. Based on a user’s
traffic specification, DYNAMO then finds and orchestrates adequate open-source projects for live traffic generation.

2.1 Overview
Figure 1 shows DYNAMO’s main components divided into
two parts. The upper block depicts the offline phase, which
is executed only once. Its goal is to build the Big Traffic
Database, containing traffic statistics and meta information
on each evaluated open-source project’s behavior. To obtain
this database, we first find publicly available open-source
projects which could potentially generate network traffic. We
then execute each project individually in an isolated virtual
machine and capture all generated traffic. We process the
recorded traffic traces in two ways: (i) we extract several
traffic features (e.g., application type, number of flows, etc.);
and (ii) we analyze the behavior of the open-source project to
identify which components send and receive which type of
application traffic. See Section 3 for more details.

The lower block outlines DYNAMO’s live traffic generation
pipeline, which is executed on-demand. In a first step, the user
specifies the desired traffic in a high-level traffic specification
language. DYNAMO then parses the specification and queries
the Big Traffic database to find matching projects. As illus-
trated, DYNAMO might have to combine multiple instances of
the same or different projects to meet each of the user’s traffic
demands. Next, DYNAMO creates a set of virtual network
interfaces that can be connected to the user’s test network.
Finally, DYNAMO orchestrates the execution of the selected
projects to generate traffic as specified.

2.2 System Details
Bootstrapping phase The input to DYNAMO is a traffic spec-
ification, that is, a set of statements in the Declarative Traffic
Specification Language (DTSL). See Figures 1 and 2 for the

stmt F generate <type> traffic
from <host> to <dst>
with <num> [k|M|G]bps
[using (6 | >) <num> flows] ;

type F <num>|TCP|UDP|database|web|...
host F h<num>
dst F <host> | external
num F (1-9)[(0-9)⇤]

Figure 2: A set of statements in Declarative Traffic Spec-
ification Language (DTSL) allows to easily, yet flexibly
specify what traffic needs to be generated by DYNAMO.

syntax definition and an example. The DTSL parser infers the
number of required hosts ⌘1, ...,⌘<0G and DYNAMO accord-
ingly creates a set of virtual network interfaces. A <type>
selects an application type as provided by the Big Traffic
database, or explicitly specifies a desired destination port.

After parsing the input, DYNAMO selects a combination of
open-source projects to match the user’s traffic demands as
closely as possible. To that end, DYNAMO converts the DTSL
input into a constrained optimization problem and solves it
using a generic solver, e.g., the Gurobi Optimizer [17]. The
challenge herein constitutes in matching the high-level traffic
specification to features captured in the Big Traffic database.

Finally, DYNAMO prepares the applications for traffic gen-
eration by downloading and bootstrapping all the selected
open-source projects, as well as their dependencies. For this
task, DYNAMO relies on the projects’ build automation tools.
DYNAMO patches the traffic sources with the virtual network
interfaces via an orchestration layer and returns the list of
virtual interfaces associated with hosts ⌘1, ...,⌘<0G , which will

Traffic generation

Send live traffic through 
a given user network

Generating network traffic from millions of code repositories HotNets ’22, November 14–15, 2022, Austin, TX, USA

O
FF

L
IN

E
PH

A
SE

§3
L

IV
E

T
R

A
FF

IC
G

E
N

.§
2

Big Traffic DB
> 74k repositories
> 345M packets
as of Oct. 2022Traffic Specification

generate web traffic
from h1 to h2
with 100 Mbps ;

generate database traffic
from h3 to external
with 50 Mbps
using > 5 flows ;

Project Selection
2⇥ Project #5:
100 Mbps web traffic

Projects #7 and #18:
50 Mbps database
traffic using 7 flows

Live Traffic Generation

h1

h2

h3

external

50 Mbps

100 Mbps

O
rc

he
st

ra
tio

n
La

ye
r

#5

#5

#7

#18

Running projects User network

Traffic Statistics & Behavior Analysis
ID Function
21 database
22 web server
23 client for 21, 22% of projects

#
of

flo
w

s

Project Search

docker-compose*.yml

! Found > 2.000.000 files
in 433.769 repositories.

Project Execution

21 22

23
VM traffic

trace

Figure 1: DYNAMO leverages the abundance of open-source projects to build the Big Traffic database. Based on a user’s
traffic specification, DYNAMO then finds and orchestrates adequate open-source projects for live traffic generation.

2.1 Overview
Figure 1 shows DYNAMO’s main components divided into
two parts. The upper block depicts the offline phase, which
is executed only once. Its goal is to build the Big Traffic
Database, containing traffic statistics and meta information
on each evaluated open-source project’s behavior. To obtain
this database, we first find publicly available open-source
projects which could potentially generate network traffic. We
then execute each project individually in an isolated virtual
machine and capture all generated traffic. We process the
recorded traffic traces in two ways: (i) we extract several
traffic features (e.g., application type, number of flows, etc.);
and (ii) we analyze the behavior of the open-source project to
identify which components send and receive which type of
application traffic. See Section 3 for more details.

The lower block outlines DYNAMO’s live traffic generation
pipeline, which is executed on-demand. In a first step, the user
specifies the desired traffic in a high-level traffic specification
language. DYNAMO then parses the specification and queries
the Big Traffic database to find matching projects. As illus-
trated, DYNAMO might have to combine multiple instances of
the same or different projects to meet each of the user’s traffic
demands. Next, DYNAMO creates a set of virtual network
interfaces that can be connected to the user’s test network.
Finally, DYNAMO orchestrates the execution of the selected
projects to generate traffic as specified.

2.2 System Details
Bootstrapping phase The input to DYNAMO is a traffic spec-
ification, that is, a set of statements in the Declarative Traffic
Specification Language (DTSL). See Figures 1 and 2 for the

stmt F generate <type> traffic
from <host> to <dst>
with <num> [k|M|G]bps
[using (6 | >) <num> flows] ;

type F <num>|TCP|UDP|database|web|...
host F h<num>
dst F <host> | external
num F (1-9)[(0-9)⇤]

Figure 2: A set of statements in Declarative Traffic Spec-
ification Language (DTSL) allows to easily, yet flexibly
specify what traffic needs to be generated by DYNAMO.

syntax definition and an example. The DTSL parser infers the
number of required hosts ⌘1, ...,⌘<0G and DYNAMO accord-
ingly creates a set of virtual network interfaces. A <type>
selects an application type as provided by the Big Traffic
database, or explicitly specifies a desired destination port.

After parsing the input, DYNAMO selects a combination of
open-source projects to match the user’s traffic demands as
closely as possible. To that end, DYNAMO converts the DTSL
input into a constrained optimization problem and solves it
using a generic solver, e.g., the Gurobi Optimizer [17]. The
challenge herein constitutes in matching the high-level traffic
specification to features captured in the Big Traffic database.

Finally, DYNAMO prepares the applications for traffic gen-
eration by downloading and bootstrapping all the selected
open-source projects, as well as their dependencies. For this
task, DYNAMO relies on the projects’ build automation tools.
DYNAMO patches the traffic sources with the virtual network
interfaces via an orchestration layer and returns the list of
virtual interfaces associated with hosts ⌘1, ...,⌘<0G , which will

Generating network traffic from millions of code repositories HotNets ’22, November 14–15, 2022, Austin, TX, USA

O
FF

L
IN

E
PH

A
SE

§3
L

IV
E

T
R

A
FF

IC
G

E
N

.§
2

Big Traffic DB
> 74k repositories
> 345M packets
as of Oct. 2022Traffic Specification

generate web traffic
from h1 to h2
with 100 Mbps ;

generate database traffic
from h3 to external
with 50 Mbps
using > 5 flows ;

Project Selection
2⇥ Project #5:
100 Mbps web traffic

Projects #7 and #18:
50 Mbps database
traffic using 7 flows

Live Traffic Generation

h1

h2

h3

external

50 Mbps

100 Mbps
O

rc
he

st
ra

tio
n

La
ye

r
#5

#5

#7

#18

Running projects User network

Traffic Statistics & Behavior Analysis
ID Function
21 database
22 web server
23 client for 21, 22% of projects

#
of

flo
w

s

Project Search

docker-compose*.yml

! Found > 2.000.000 files
in 433.769 repositories.

Project Execution

21 22

23
VM traffic

trace

Figure 1: DYNAMO leverages the abundance of open-source projects to build the Big Traffic database. Based on a user’s
traffic specification, DYNAMO then finds and orchestrates adequate open-source projects for live traffic generation.

2.1 Overview
Figure 1 shows DYNAMO’s main components divided into
two parts. The upper block depicts the offline phase, which
is executed only once. Its goal is to build the Big Traffic
Database, containing traffic statistics and meta information
on each evaluated open-source project’s behavior. To obtain
this database, we first find publicly available open-source
projects which could potentially generate network traffic. We
then execute each project individually in an isolated virtual
machine and capture all generated traffic. We process the
recorded traffic traces in two ways: (i) we extract several
traffic features (e.g., application type, number of flows, etc.);
and (ii) we analyze the behavior of the open-source project to
identify which components send and receive which type of
application traffic. See Section 3 for more details.

The lower block outlines DYNAMO’s live traffic generation
pipeline, which is executed on-demand. In a first step, the user
specifies the desired traffic in a high-level traffic specification
language. DYNAMO then parses the specification and queries
the Big Traffic database to find matching projects. As illus-
trated, DYNAMO might have to combine multiple instances of
the same or different projects to meet each of the user’s traffic
demands. Next, DYNAMO creates a set of virtual network
interfaces that can be connected to the user’s test network.
Finally, DYNAMO orchestrates the execution of the selected
projects to generate traffic as specified.

2.2 System Details
Bootstrapping phase The input to DYNAMO is a traffic spec-
ification, that is, a set of statements in the Declarative Traffic
Specification Language (DTSL). See Figures 1 and 2 for the

stmt F generate <type> traffic
from <host> to <dst>
with <num> [k|M|G]bps
[using (6 | >) <num> flows] ;

type F <num>|TCP|UDP|database|web|...
host F h<num>
dst F <host> | external
num F (1-9)[(0-9)⇤]

Figure 2: A set of statements in Declarative Traffic Spec-
ification Language (DTSL) allows to easily, yet flexibly
specify what traffic needs to be generated by DYNAMO.

syntax definition and an example. The DTSL parser infers the
number of required hosts ⌘1, ...,⌘<0G and DYNAMO accord-
ingly creates a set of virtual network interfaces. A <type>
selects an application type as provided by the Big Traffic
database, or explicitly specifies a desired destination port.

After parsing the input, DYNAMO selects a combination of
open-source projects to match the user’s traffic demands as
closely as possible. To that end, DYNAMO converts the DTSL
input into a constrained optimization problem and solves it
using a generic solver, e.g., the Gurobi Optimizer [17]. The
challenge herein constitutes in matching the high-level traffic
specification to features captured in the Big Traffic database.

Finally, DYNAMO prepares the applications for traffic gen-
eration by downloading and bootstrapping all the selected
open-source projects, as well as their dependencies. For this
task, DYNAMO relies on the projects’ build automation tools.
DYNAMO patches the traffic sources with the virtual network
interfaces via an orchestration layer and returns the list of
virtual interfaces associated with hosts ⌘1, ...,⌘<0G , which will

Identified projects

Setup

Run the correct 
containers

Combine to 
virtual hosts

Orchestration

31

Our preliminary trace analysis shows

the potential of the idea

32

web (HTTP, HTTPS)

crypto (Bitcoin, IPFS)

database (MongoDB, MySQL)

message-broker (RabbitMQ, Apache Kafka)

We found a wide range of traffic-generating applications

Our preliminary trace analysis shows

the potential of the idea

> 13M pkts (~417 Mbps), a multi-paxos implementation: thibmeu/imperial-multi-paxos-in-elixir

Some of the applications generate a lot of traffic

> 367k flows (~4 Mbps), a Telegram proxy: squizduos/docker-server

33

web (HTTP, HTTPS)

crypto (Bitcoin, IPFS)

database (MongoDB, MySQL)

message-broker (RabbitMQ, Apache Kafka)

We found a wide range of traffic-generating applications

Our preliminary trace analysis shows

the potential of the idea

https://github.com/thibmeu/imperial-multi-paxos-in-elixir
https://github.com/squizduos/docker-server

Machine Learning for Networking 

What? With what? For what?

What to train?

With what data?

For what purpose?

transformers to the rescue

fun with LLMs

big code ⨉ networking

3

Ceci n'est pas un réseau.

ML-based models can represent other types of network data

ML-based models can represent other types of network data

Routing, forwarding, topology, events, …

ML-based models can represent other types of network data

Routing, forwarding, topology, events, …

Let's look at an example, shall we?

Correct!

But also boooring…

We now have 3 routes

for 10.0.0.0/8

preference as_path_length external? next-hop

100 3 yes 1.1.1.1

igp_cost

0

200 3 yes 0 1.1.1.2

150 3 yes 0 1.1.1.3

We now have 3 routes

for 10.0.0.0/8

preference as_path_length external? next-hop

100 3 yes 1.1.1.1

igp_cost

0

200 3 yes 0 1.1.1.2

150 3 yes 0 1.1.1.3

best

Not bad!

Spot on!

Now…

Let's see if this thing

can forward IP traffic

Correct!

But also boooring…

Recall our router only knows how to reach 10/8

Not bad at all!

Wrong!

Our router only

partially understands

longest-prefix match

blog.nsg.ee.ethz.ch

To see much more

head towards…

Machine Learning for Networking 

What? With what? For what?

What to train?

With what data?

For what purpose?

transformers to the rescue

fun with LLMs

big code ⨉ networking

Ceci n'est pas un réseau.

Machine Learning for Networking 

What? With what? For what?

Google Networking Summit

Laurent Vanbever

Wed Oct 18 2023

nsg.ee.ethz.ch

Ceci n'est pas un réseau.

