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ABSTRACT

Generalizing machine learning (ML) models for network
traffic dynamics tends to be considered a lost cause. Hence
for every new task, we design new models and train them on
model-specific datasets closely mimicking the deployment
environments. Yet, an ML architecture called Transformer
has enabled previously unimaginable generalization in other
domains. Nowadays, one can download a model pre-trained
onmassive datasets and only fine-tune it for a specific task and
context with comparatively little time and data. These fine-
tuned models are now state-of-the-art for many benchmarks.

We believe this progress could translate to networking and
propose a Network Traffic Transformer (NTT), a transformer
adapted to learn network dynamics from packet traces. Our
initial results are promising: NTT seems able to generalize to
new prediction tasks and environments. This study suggests
there is still hope for generalization through future research.
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Figure 1: Could we collectively learn general network
traffic dynamics once and focus on task-specific data
collecting and learning for all future models?

Pre-train NTT
once
large & general

evolutionand future traffic’s fate—or which action to take next.
Thisisanotoriously complex task,and the research community
isincreasingly turning to Machine Learning (ML) for solutions
in many applications, including congestion control [4, 20,
28, 36], video streaming [5, 25, 38], traffic optimization [11],
routing [34], flow size prediction [15, 29], MAC protocol
optimization [21, 40], and network simulation [42].

Problem Today’s models do not generalize well; i.e., they
often fail to deliver outside of their original training environ-
ments[7,8,16,38,39]; generalizing todifferent tasksisnoteven
considered. Recent work argues that, rather than hoping for
generalization, one obtains better results by training in-situ,
i.e., using data collected in the deployment environment [38].
Thus, today we tend to design and train models from scratch
using model-specific datasets (Fig. 1, top). This process is
repetitive, expensive, and time-consuming. Moreover, the
growing resource requirements to even attempt training these
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What do these systems have in common?

They have the same problem setting.

From past traffic ...

... an ML system estimates the state
of the network to make a prediction.

MimicNet packet (drop, latency, ECN)
Puffer transmission time

GENET bitrate for next chunk



What do these systems have in common?

They have the same problem setting. But that’s about it.

From past traffic ...

... an ML system estimates the state
of the network to make a prediction.

MimicNet  packet (drop, latency, ECN)
Puffer transmission time

GENET bitrate for next chunk
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ML systems in networking do not generalize. This limits re-usability,

forcing us to repeat data collection, model design, and training.

, tailored to network context & task ~
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a context in situ v [Puffer]
a similar context (wireless) v /X  [GENET]
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[Biases]
multiple contexts (both) X

Different task (e.g. predict delay)

X (requires a completely new model and data)
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Is there no way to get

optimal performance

for multiple contexts and different tasks

without starting from scratch every time ?
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In NLP and CV, Transformer-based architectures

generalize by learning to infer sequence context.

NLP: Natural Language Processing; CV: Computer Vision; Images generated by OpenAl Dall-E 2. 17
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In NLP and CV, Transformer-based architectures

generalize by learning to infer sequence context.

Dall-E 2
input: (text) Hand me that stick! Stick to that hand.

output: (generated image)

NLP: Natural Language Processing; CV: Computer Vision; Images generated by OpenAl Dall-E 2.
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In NLP and CV, Transformer-based architectures

generalize by learning to infer sequence context.

Dall-E 2
input: (text) Hand me that stick! Stick to that hand.

output: (generated image)

NLP: Natural Language Processing; CV: Computer Vision; Images generated by OpenAl Dall-E 2.
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A general pre-trained Transformer encoder

can be combined with specific fine-tuned decoders.
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can be combined with specific fine-tuned decoders.

... a large and general
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dynamics in context ...
sequence of packets sequence of encoded packets

each packet augmented
with inferred context
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A general pre-trained Transformer encoder

can be combined with specific fine-tuned decoders.

R N ——

... a large and general

Il
From past ... while small and
: Transformer learns .
traffic ... - specific decoders
dynamics in context ...

make predictions.
sequence of packets sequence of encoded packets
each packet augmented
with inferred context
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for multiple contexts and different tasks

without starting from scratch every time
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We cannot just copy an NLP Transformer:

a Network Traffic Transformer (NTT) must handle network challenges!

B

27



We cannot just copy an NLP Transformer:

a Network Traffic Transformer (NTT) must handle network challenges!

B

Challenge #1
Avoid packet features tailored to a specific task.
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Learn contextual dynamics during pre-training.
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We cannot just copy an NLP Transformer:

a Network Traffic Transformer (NTT) must handle network challenges!

B

Challenge #1
Avoid packet features tailored to a specific task.
— learning features

Challenge #2
Process long sequences without loosing detail.
— aggregate past packets hierarchically

Challenge #3
Learn contextual dynamics during pre-training.
— pre-train to predict end-to-end delay

29



In simulation, we observe first evidence

that networking could benefit from pre-trained models as well.

We pretrain, ...

context

30 senders and
a single shared
bottleneck

task
delay prediction
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In simulation, we observe first evidence

that networking could benefit from pre-trained models as well.

We pretrain, ... ... fine-tune, ... ... and find that we:

get equal or better performance
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Our simulation results are promising, and it is time
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Re-create existing models based on NTT,

collecting new data where needed.
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Our simulation results are promising, and it is time

to

Biases in Data-Driven Networking, and
What to Do About Them

MimicNet: Fast Performance Estimates for Data

<your name here>

Re-create existing models based on NTT,

collecting new data where needed.

Create new models based-on NTT.

37



Real-world applications will reveal all limits, but there

are clear steps to
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Frame 56: 122 bytes on wire (976 bits)
Ethernet II, Src: RivetNet_db:Be:93 (9
Internet Protocol Version 4, Src: 192.
Transmission Control Protocol, Src Por
Secure Sockets Layer

How can we represent any

combination of headers?
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Real-world applications will reveal all limits, but there

are clear steps to

b . . . .

Frame 56: 122 bytes on wire (976 bits)
Ethernet II, Src: RivetNet_db:Be:93 (9
Internet Protocol Version 4, Src: 192.
Transmission Control Protocol, Src Por
Secure Sockets Layer

15 32

Linear Layers

- |

Linear Layers
most recent—
| 992 5 32

---------------------

How can we represent any

combination of headers?

Which aggregation levels cover

all significant network interactions?

40
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ABSTRACT

In theory, any network operator, developer, or vendor should
have access to large amounts of live network traffic for test-
ing their solutions. In practice, though, that is not the case.
Network actors instead have to use packet traces or synthetic
traffic, which is highly suboptimal: today’s generated traffic
is unrealistic. We propose a system for generating live appli-
cation traffic leveraging massive codebases such as GitHub.

Our key observation is that many repositories have now
become “orchestrable” thanks to the rise of container tech-
nologies. To showcase the practicality of the approach, we
iterate through >293k GitHub repositories and manage to cap-
ture >74k traces containing meaningful and diverse network
traffic. Based on this first success, we outline the design of a
system, DYNAMO, which analyzes these traces to select and
orchestrate open-source projects to automatically generate
live application traffic matching a user’s specification.

CCS CONCEPTS

* Networks — Network simulations; Network experimen-
tation; Logical / virtual topologies,

KEYWORDS
network virtualization, traffic generation, traffic analysis
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Generating representative, live network traffic
out of millions of code repositories

Sandro Lutz
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1 INTRODUCTION

Generating representative network traffic is a fundamental
requirement for many network actors including researchers,
operators, and vendors. Among others, network actors use
traffic generators to test network devices, evaluate network
algorithms (e.g., traffic engineering, congestion control, load-
balancing, packet scheduling) or service-level agreements.

Laurent Vanbever
ETH Ziirich

Problem Generating (large amounts of) representative ap-
plication traffic is hard. We can distinguish two techniques:
(i) replaying packet traces [2], possibly collected from a pro-
duction environment; and (ii) generating traffic using a soft-
ware [4, 8, 12, 19, 21] or hardware-based [20] traffic gener-
ator, possibly replicating some traffic features (e.g., packet
inter-arrival time). Unfortunately, both techniques fall short
when it comes to the representativity of the generated traffic.
While replaying packet traces (e.g., from CAIDA [6] or
MAWI [7]) in real-time offers realistic traffic patterns, it does
not consider the applications’ behavior, meaning one cannot
reason about how traffic would behave under different net-
work conditions. Another problem is that publicly available
traces exhibit low throughput (few Gbps, at best) preventing
their use for, e.g., stress tests. And while replaying them at a
faster speed is possible, it also comes at the price of represen-
tativity by violating the original traffic characteristics.
Similarly, while using stateful traffic generators allows to
reason about end point behaviors under different conditions,
they also fail to generate representative application traffic. In-
deed, traffic generators either rely on simple “blasting” strate-
gies (e.g., iperf [13]) or generate their traffic according to
distributions (e.g., using the “web search” or “data mining”

PN ——



Today, we only have a few gold nuggets of network data available

Intrusion Detection RIPE Atlas
Evaluation Dataset
(CIC-IDS2017

10


https://www.scienceimage.csiro.au/image/10458

We believe there exists an entire gold mine/pile of network data
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https://labs.openai.com/s/zD0NTe1h8FPJPCsjSlkZvKMv

We believe there exists an entire gold mine/pile of network data

# GitHub
repositories

A

338M
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In order to tap into this gold mine,
we have to bridge the gap from static text/code to actual network data
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Static code analysis Analyze usage of network functions
Extracts high-level traffic insights

Running the code Compile and run each open-source project
Generates live traffic which reacts to network events

27?7 The next crazy idea
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However, executing arbitrary open-source projects is challenging

Arbitrary code How do we build the projects?

Arbitrary code, language and APIs

Missing documentation How do we run the projects?

Missing commands, dependencies and support

Unexpected errors How do we handle bugs and errors?

Unexpected crashes, inputs and runtime

16



We leverage the rise of automation frameworks
which allow to compile and run arbitrary code
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We leverage the rise of automation frameworks
which allow to compile and run arbitrary code

Docker containers Are a standalone, executable package

Contain all the code and its dependencies

docker
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We leverage the rise of automation frameworks

which allow to compile and run arbitrary code docker

Docker containers Are a standalone, executable package

Contain all the code and its dependencies

Orchestration files Define how multiple containers are configured

A single command builds and starts all of them

19
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338M repositories

found via GitHub
APl queries

\4

> 2M orchestration files

available

orchestrable
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338M repositories

found via GitHub
APl queries

\4

> 2M orchestration files

so far, 6 VMs running
for ~9 months

v

> 74k orchestration files

available

orchestrable

traffic-generating

22



Our vision is to combine big data and container solutions
to generate representative, live network traffic
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Our vision is to combine big data and container solutions
to generate representative, live network traffic

with respect to a
given user specification
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Our vision is to combine big data and container solutions
to generate representative, live network traffic
|

\

with respect to a traffic/applications that
given user specification react to network events
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generate web traffic
from hl to hZ
with 100 Mbps ;
generate database traffic
from h3 to external
with 50 Mbps
using > 5 flows ;

2X Project #5:
100 Mbps web traffic

Projects #7 and #18:
50 Mbps database
traffic using 7 flows

Orchestration

g R
= —lhl
S5 —
2 & —he
5" (3
O —

O —
Combine to

virtual hosts
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Our preliminary trace analysis shows
the potential of the idea
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Our preliminary trace analysis shows

the potential of the idea

We found a wide range of traffic-generating applications

web (HTTP, HTTPS) database (MongoDB, MySQL)

crypto (Bitcoin, IPFS) message-broker (RabbitMQ, Apache Kafka)
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Our preliminary trace analysis shows
the potential of the idea

We found a wide range of traffic-generating applications
web (HTTP, HTTPS) database (MongoDB, MySQL)

crypto (Bitcoin, IPFS) message-broker (RabbitMQ, Apache Kafka)

Some of the applications generate a lot of traffic

> 13M pktS (~417 MbpS), d mU|ti'anOS implementation: thibmeu/imperial-multi-paxos-in-elixir

> 367k flows (~4 MbpS), d Telegram ProxXy. squizduos/docker-server

33
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ML-based models can represent other types of network data

Routing, forwarding, topology, events, ...



ML-based models can represent other types of network data

Routing, forwarding, topology, events, ...

Let's look at an example, shall we?



Y, | want you to act as a BGP router. | will type in incoming BGP routes (with their attributes)
for various IP prefixes and you will reply with what BGP route is the best route.



| will write
the incoming BGP route in JSON. Your reply must be in JSON and inside a code block. You
reply must only include the best BGP route for the incoming prefix including its attributes.
Do not write anything else. Do not write any explanation unless I'm asking you to.



The first route you receive is {"prefix": "10.0.0.0/8", "local_preference": "100" "as_path":
"1 2 3" "as_path_length": "3" "neighboring_as": "1", "learned_via_ebgp": "true",
"igp_cost": "0", "med": "0", "next-hop": "1.1.1.1"}



{"prefix": "10.0.0.0/8", "local_preference": "100", "as_path": "1 2 3",

"as_path_length": "3", "neighboring_as": "1", "learned_via_ebgp": "true",
"igp_cost": "@", "med": "@", "next-hop": "1.1.1.1"}




LV

The next route you receive is {"prefix": "10.0.0.0/8", "local_preference": "200", "as_path":
"4 5 6" "as_path_length": "3", "neighboring_as": "4" "learned_via_ebgp": "true",
"igp_cost": "0", "med": "0", "next-hop": "1.1.1.2"}

The next route you receive is {"prefix": "10.0.0.0/8", "local_preference": "150", "as_path":
"7 8 9" "as_path_length": "3" "neighboring_as": "7", "learned_via_ebgp": "true",
"igp_cost": "0", "med": "0", "next-hop": "1.1.1.3"}



We now have 3 routes preference as_path_length external? igp_cost next-hop

for 10.0.0.0/8
100 3 yes 0 1.1.1.1

200 3 yes 0 1.1.1.2
150 3 yes 0 1.1.1.3



We now have 3 routes preference as_path_length external? igp_cost next-hop

for 10.0.0.0/8
100 3 yes 0 1.1.1.1

best 200 3 yes 0 1.1.1.2
150 3 yes 0 1.1.1.3



{"prefix": "10.0.0.0/8", "local_preference": "200", "as_path": "4 5 6",

"as_path_length": "3", "neighboring_as": "4", "learned_via_ebgp": "true",
"igp_cost": "@", "med": "@", "next-hop": "1.1.1.2"}




- Explain in English how did you select the best route for 10.0.0.0/8?




Spot on! @ | selected the route with the highest local preference value for the prefix 10.0.0.0/8. In this
case, the route with the highest local preference value is the second route you provided

with a local preference value of 200.



Now...
Let's see if this thing
can forward IP traffic



. What next-hop do you use to send a packet to 10.0.0.1?




Correct! @ Based on the information provided, | would use the next-hop value of 1.1.1.2 to send a
But also boooring... packet to 10.0.0.1. This is because the best route for the prefix 10.0.0.0/8, according to the

information provided, has a next-hop value of 1.1.1.2.



What next-hop do you use to send a packet to 11.0.0.1?




()

Recall our router only knows how to reach 10/8



I'm sorry, but | do not have enough information to answer your question. You have not
provided any routes for the prefix 11.0.0.0/8, so | do not have any information about the
best route for that prefix. Without that information, | cannot determine which next-hop to

use to send a packet to 11.0.0.1.



Not bad at all! @ I'm sorry, but | do not have enough information to answer your question. You have not
provided any routes for the prefix 11.0.0.0/8, so | do not have any information about the
best route for that prefix. Without that information, | cannot determine which next-hop to

use to send a packet to 11.0.0.1.



- What next-hop do you use to send a packet to 10.1.0.1?




Wrong! @ I'm sorry, but | do not have enough information to answer your question. You have not

Our router only provided any routes for the prefix 10.1.0.0/24, so | do not have any information about the
partially understands best route for that prefix. Without that information, | cannot determine which next-hop to
longest-prefix match use to send a packet to 10.1.0.1.



To see much more
head towards...

blog.nsg.ee.ethz.ch
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