Verifying configurations was the easy part

My ongoing quest toward correct network operations

Formally Verified

Laurent Vanbever

nsg.ethz.ch | netfabric.ai

FMANO
Mon Sept 8 2025

http://nsg.ethz.ch
http://netfabric.ai

<. Switzerland AFEE ca

- '

o.r‘:.'.‘.' - -1 » :
DI TN 27

o)
o 7
. . -
L o g
.) '. .
: '& | ' —
- ‘ I ‘ .. -
- : :
- . - A -
A s ' <N e §
. o . - -

- " (: . —\ . .
» . - '0; . -
. . " L)\," | s
. - . + - i R
. . L RN - . | o .wf - Q e ﬁ.' v- L8
. r 5 h - 'q’f Y
| & o ’ : Ad-
. - E “ ..' L J 5 » ‘.'
h '.. I‘ . o . ' ' . b B
- ‘.' g .
- - 3 . (

/—4 .i.’ " <) W
P PR ST A A e
witzerland raie
o .,. e T e ' o’ .,.,}.. -
e rity

> e

-
r

, .
s P S B
. ¢ -
-

e

.Q;’-‘.s,," A} g ‘/s)’x ’
- ‘ " = ¢ .
4 "

O ¢

® O m Flight delays after technical gl X -+

<& C O @ euronews.com/my-europe/2022/06/15/flight-delays-after-technical-glitch-closes-swiss-airspace

® English ~

cUronews.

My Europe World Business Sport Green Next Travel Culture Video := Programmes ¥

Home > My Europe > Europe News > Flight delays after technical glitch closes Swiss airspace
MY.eUroOe Eeurope NEws

Flight delays after technical glitch closes Swiss airspace
QCOMMENTS

By Euronews with AFP « Updated: 15/06/2022

BE SR SRRGUSANNANENES
!
.

1
|
_

1
:'!!:

ha
1Y
i

!
l

TR
THENH]

HU R
i
1
e A
"

ll“}l‘

Ul

l'll'll'lt‘.l‘ll.’lsl

.
-

T I I LT
| i

T I T TITIE
S L T T
| !

il
i) B 2
T T T T

RRRRRRRNRRRRRRRENNRRINNINE
AL T LU IR L
ERARARCRSEECSHABERNECSEN e
(OOE FEERRETNTAT Fprenges 11

FASERRNARRRRENENRINY

i
i
{l

Hij

ARMug slle Gates
Departara all gates

h % O *» O @CUpdate

)

This network outage lasted
~2 hours

This network outage lasted
~2 hours

caused by a hardware failure

Q

. Facebook, Instagram, WhatsA; X 4+

X 0

& nytimes.com/2021/10/04/technology/facebook-down.html

TECHNOLOGY Ehe New ork Eimes

Gone in Minutes, Out for Hours:

Outage Shakes Facebook

When apps used by billions of people worldwide blinked out,
lives were disrupted, businesses were cut off from customers —
and some Facebook employees were locked out of their offices.

o5 Givethisartice A> [] @ [Jess

racEBOOK IO

’
. 34
L“" ~ ;
¥ Sk =
e U

A%

h % © % O @ (update)

This network outage lasted
~7 hours

This network outage lasted
~7 hours

caused by a misconfiguration

Networks are ...

Networks are easy to break

Networks are easy to break
hard to repair

Networks are easy to break
hard to repair

How come?’

Configuring networks is hard because of
a fundamental semantic gap

distributed

algorithms

distributed

>

algorithms forwarding state

outputs

C

configurations

distributed

>

topology T g algorithms forwarding state

external routes R

Inputs

network
operators

C

configurations

distributed :
algorithms forwarding state

topology T S

external routes X

Inputs outputs

network

operators
high-level

specification

C

configurations |
distributed per-device

>

algorithms forwarding state

topology T S

external routes X

Inputs outputs

network

operators
high-level

specification

per-device %

configurations | |

o0l T » distributed _ ber-device
OPO10gY algOritth forwarding state

external routes R

Inputs outputs

network

operators
high-level

specification

ﬁMIr/]fTH E\E\:‘-AP r‘rmw

-

N
per-device %
configurations | |

distributed per-device
T
R

>

algorithms forwarding state

>

topology

external routes

Inputs outputs

Human factors contribute to
between 65% and 80% of all downtime incidents

Network verification promises to significantly
increase network reliability

Network verification promises to significantly
increase network reliability

What is it?

Given specification SO

Given specification SO configuration C

Given specification QO configuration C

v
Return C =" <:

Network verification has been wildly successful

academically

Debugging the Data Plane with Anteater

Haohui Mai Ahmed Khurshid Rachit Agarwal
Matthew Caesar P. Brighten Godfrey Samuel T. King

University of lllinois at Urbana-Champaign
{mai4, khurshi1, agarwa16, caesar, pbg, kingst}@illinois.edu

ABSTRACT

Diagnosing tworks is

error-prone pr Exi s ist operato

nmuh focus on analyzing control plane configuration. Con-
limited in that it

sneralize across proto
ce it must model complex configuration languages
amic protocol behavior.

is of a net
We present

Anteater translates high-level network invariants into in-
nces of boolean satisfiability problems (SAT), them
v un-
lied to a large
including for-
ve false pos

Categories and Subject Descriptors

3 [Computer-Communication Networks]: Networ
5 [Software Engineering]: Testing and

General Terms

Algorithms, Reliability

Keywords

Data Plane Analysis, Network Troubleshooting, Boolean Sat-

personal or classroom u gmnkdw hout fee provided that copies arc
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the firs copy oth

permission and/or a fee
SIGCOMM'11, August 15-19, 2011, Toronto, Ontario, Canada.
Copyright 2011 ACM 978-1-4503-0797-0/11/08 ...$

are complex, incc ing
s or thousands of network devices from multip
vendors performing dx\er c :Jependenl functior

wi
virtual an s (nnd \L-\N). As in any complex
computer system, enterprise networks are prone to a wide

[10,11, 12, 14 25, 32, 38, 41] m.lmunmun-

X . r unexpecte ac
protocols. These errors can " eadt 10 oscillations, black holew,
faulty adver or route leaks that ultimately cau
disconnectivity and security vulnerabiliti

v Tu dddrem thl; u-
tomated tools for network diag s [14, 4
figuration files co o rators. While wml the
tools have two limitations stemming from their analysis of
nal
re, which interprets and
. Both commercial and open
;s that affect net-
) curity [41] and have led to multiple
itages and vulne (11, 44]. nd,
configuration analysis must model complex configuration lan-
guages and dynami 1 behavior in uxder to determine
the ultimate effect of a configuration,
e on ch tn f
such as BGP [14, 15] or firewalls [2, 43]. Such diagnosis will
be unable to reason about interactions that span multiple
protocol
in configura
typical ne
Ve take a different and complementary approach. In:
s in the control pl
ose as possible to the network’s a
tual bF}lﬂWﬂT thr(-unh formal anal
Data plan
. N

that “Un-
are to troubleshoot
trators generally do unL have time

is to mdnuall\
in the nP'\vm .

SIGCOMM "11

Header Space Analysis: Static Checking For Networks

Peyman Kazemian George Varghese Nick McKeown
Stanford University UCSD and Yahoo! Research Stanford University

emian@stanford.e vargh

Abstract

Today’s networks typically carry or deploy dozens
of protocols and mechanisms simultaneously such as
MPLS, NAT, ACLs and route redistribution. Even when
individual protocols function correctly, failures can arise
from the complex interactions of their aggregate, requir-
ing network administrators to be masters of detail. Our
goal is to automatically find an important class of fail-
ures, regardless of the protocols running, for both opera-
tional and experimental networks.

To this end we developed a general and protocol-
agno: framework, called Header Space Analy:
(HSA). Our formalism allows us to statically check net-
work specifications and configurations to identify an im-
portant class of failures such as Reachability Failures,
Forwarding Loops and Traffic Isolation and Leakage

In HSA, protocol header fields are not first

instead we look at the entire packet header

as a concatenation of bits without any associated mean-

ing. Each packet is a point in the {0, 1}” space where L

s the maximum length of a packet header, and network-

ing boxes transform packets from one point in the space
to another point or set of points (multicast).

‘We created a library of tools, called Hassel, to imple-
ment our framework, and used it to analyze a variety of
networks and protocols. Hassel was used to analyze the
Stanford University backbone network, and found all the
forwarding loops in less than 10 minutes, and verified
reachability constraints between two subnets in 13 sec-
onds. It also found a large and complex loop in an exper-
imental loose source routing protocol in 4 minutes.

1 Introduction

‘Accidents will occur in the best-regulated
amilies” — Charles Dickens

In the beginning, a switch or router was breathtak-
ingly simple. About all the device needed to do was in-
dex into a forwarding table using a destination address,
and decide where to send the packet next. Over time,
orwarding grew more complicated. Middleboxes (e.g.
NAT and firewalls) and encapsulation mechanisms (e.
VLAN and MPLS) appeared to escape from IP’s lim-
itations: e.g., NAT bypasses address limits and MPLS

NSDI

ucsd.edu nickm@stanford.edu

allows flexible routing. Further, new protocols for spe-
cific domains, such as data centers, WANs and wireless,
have greatly increased the complexity of packet forward-
ing. Today, there are over 6,000 Internet RFCs and it is
not unusual for a switch or router to handle ten or more
encapsulation formats simultaneously.

This complexity makes it daunting to operate a large
network today. Network operators require great sophisti-
cation to master the complexity of many interacting pro-
tocols and middlebo: The future is not any more rosy

Xity today makes operators wary of trying new

even if they are available, for fear of break-

ing their network. Complexity also makes networks frag-
ile, and susceptible to problems where hosts become is
lated and unable to communicate. Debugging reacha-
bility problems is very time consuming. Even simple
questions are hard to answer, such as “Can Host A talk
to Host B?” or “Can packets loop in my network?” or
“Can User A listen to communications between Users
B and C?”. These questions are especially hard to an-
wer in networks carrying multiple encaj
containing boxes that filter packets.

Thus, our first goal is to help system administrators
statically analyze production networks today. We de-
scribe new methods and tools to provide formal answers
to these questions, and many other failure conditions, re-
gardless of the protocols running in the network.

Our second goal is to make it easier for system ad-

0 guarantee isolation bemeen sets of hosts.

way is usually

mp]e example used to-

day. If configured correctly, we can be confident that traf-
fic in one slice (e.g. a VLAN) cannot leak into another.
This is useful for security, and to help answer questions
such as “Can I prevent Host A from talking to Host B?""
For example, imagine two health-care providers using
the same phys network. HIPAA [20] rules require
that no information about a patient can be read by other
providers. Thus a natural application of slicing is to place
each provider in a separate slice and guarantee that no
packet from one slice can be controlled by or read by the

and for
physical network. Our tools can verify that slices have

12

VeriFlow: Verifying Network-Wide Invariants in Real Time

Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, P. Brighten Godfrey
Department of Computer Science
University of lllinois at Urbana-Champaign
201 North Goodwin Avenue
Urbana, lllinois 61801-2302, USA
{khurshi1, wzhou10, caesar, pbg}@illinois.edu

ABSTRACT

Networks are complex and prone to bu

a layer
networking controller and network devices that ched
network-wide invariant violations dynami

an impleme
a Mininet OpenFlow network and Route Views trace data,
we find that VeriFlow can perform rigorous checking within
hundreds of micros

Categories and Subject Descriptors

[Computer-Communication Networks]: Network
Operations— Network management, Network monitoring

General Terms

ation, Management, Pe

running on lumrlrsd or thou d
vices, such as routers, switches, and firewalls from :hﬁexent
nount of

se commonly in practice,

Permission to make digital or hard copics of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial
bear this notice and the full citation on the first page. To copy others
republish, to post on servers or to red requires prior specific
permission and/or a fee.

SDN'12, August 13, 2012, Helsinki, Finland.

..$15.00.

NSDI

e r, SDN &
multiple applications or even multiple nsers to program the

using these approaches, an operator who wants to ensure
must hd\ access to the

where cont
Another Appruach is to

g8
This paper studies the following question: Is it possible to
check network-wide invariants, such as a
loops, in real time a
able us to check updat
: s, or even pri
Howev

they operate on timescales of s
curzent SDN controller

ent a pre
rates that (hr goal of r

The average run time of reachability tes
1

13

A General Approach to Network Configuration Analysis

Ari Fogel Stanley Fung Luis Pedrosa Meg Walraed-Sullivan

Ramesh Govindan Ratul Mahajan ~ Todd Millstein

University of California, Los Angeles University of Southern California Microsoft Research

Abstract— We present an approach to detect network
configuration errors, which combines the benefits of two
prior approaches. Like prior techniques that analyze con-
figuration files, our approach can find errors proactively,
before the configuration is applied, and answer “what if”
questions. Like prior techniques that analyze data-plane
snapshots, our approach can check a broad range of for-
warding properties and produce actual packets that vio-
late checked properties. We accomplish this combina

by faithfully deriving and then analyzing the data plane
that would emerge from the configuration. Our deriva-
tion of the data plane is fully declarative, employing a set
of logical relations that represent the control plane, the
data plane, and their relationship. Operator

these relations to unde i i

provenance. We use our approach to analyze two large
university networks with qualitatively different routing
designs and find many misconfigurations in each. Oper-
ators have confirmed the majority of these as errors and
have fixed their configurations accordingly.

1 Introduction

Configuring networl arduous because policy require-
ments (for resource management, access control, etc.)
can be complex and configuration languages are low-
level. Consequently, configuration errors that compro-
mise availability, security, and performance are com-
mon [7, 21, 36]. In a recent incident, for example, a mis.
configuration led to a nation-wide outage that impacted
all customers of Time Warner for over an hour [3].

Prior approaches Researchers have developed two
main approaches to detect network configuration errors.
The first approach direcllv analyzes network configura-
tion files [2, 5, 7, 24, 25, 28, 34]. Such a static analysis
can flag errors proactively, before a new configuration is
applied lo the network, and it can naturally answer “what
if” questions with respect to different environments (i.e.,
failures and route announcement from neighbors).

However, configurations of real networks are complex,
with many interacting aspects (e.g., BGP, OSPF, ACLs,
VLANS, static routing, route redistribution); existing
configuration analysis tools handle this complexity by
developing customized models for specific aspects of the
configuration or specific correctness properties. For in-
stance, rce [7] produces a normalized representation of
configuration that lets it check a range of properties that
correspond to common erra i

BGP, whether OSPF adjacencies are c.onnb red on both
ends, and that there are no duplicate router identifiers).
Similarly, FIREMAN [34] produces a “rule graph” struc-

cal, but it also limits the scope of what can be checked.
Further, because many aspects of the configuration are
not analyzed, it can be difficult for operators to a

how and whether identified errors ultimately impact for-
warding.

Researchers have recently proposed a second approach
that can be used to detect configuration errors: analyzing
the data plane snapshots (i.e., forwarding behavior) of
the network [13, 14, 22, 37]. Unlike with static analysis
any configuration error that causes undesirable forward-
ing can be precisely detected, because the data plane re-
flects the combined impact of all configuration
Further, because the data plane has well-understood se-
mantics and can be efficiently encoded in various logics,
a wide range of forwarding properties can be concisely
expressed and scalably checked with off-the-shelf con-
straint solvers.

Unfortunately, analysis of data plane snapshots cannot
prevent errors proactively, before undesirable forwarding
occurs. Further, once a problem is flagged, the operator:
still need to localize the responsible snippets of configu-
ration. This task is challenging because the relationship
between configuration snippets and forwarding behavior
is complex. The responsible snippet is not necessarily

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI '15) 469

NSDI

15

()

Ryan Beckett

Princeton Unive

Ratul Mahajan

Microsoft Research & Intentionet

ABSTRACT

We present Minesweeper, a tool to verify that a network sati:
fies a wide range of intended properties such as reachability or
isolation among nodes, waypointing, black holes, bounded path
length, load-balancing, functional equivalence of two routers, and
fault-tolerance. Minesweeper translates network configuration files
into a logical formula that captures the stable states to which the
network forwarding will converge result of interactions be-
tween routing protocols such as OSPF, BGP and static routes. It
then combines the formula with constraints that describe the in-
tended property. If the combined formula is satisfiable, there exists
a stable state of the network in which the property does not hold.
Otherwise, no stable state (if any) violates the property. We used
Minesweeper to check four properties of 152 real networks from
a large cloud provider. We found 120 violations, some of which
are potentially serious security vulnerabilities. We also evaluated
Minesweeper on synthetic benchmarks, and found that it can verify
rich properties for networks with hundreds of routers in under five
‘minutes. This performance is due to a suite of model-slicing and
hoisting optimizations that we developed, which reduce runtime
by over 460x for large networks.

CCS CONCEPTS
« Networks — Network reliabi

KEYWORDS
Network verification; Control plane anal

ACM Reference format:

Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. 2017. A
neral Approach to Network Configuration Verification. In Proceedings of

SIGCOMM '17, Los Angeles, CA, USA, August 21-25, 2017, 14 pages,

https://doi.org/10.1145/3098822.3098834

1 INTRODUCTIO!

The control plane of traditional (non-SDN) networks is a complex
distributed system. Network devices use one or more protocols to

Permission to make digital or hard copies of all or part of this work for personal or
classroom usc is granted without fee provided that copies are not made or distributed
for profit or commercial advantag .mdthn\u)pmibz:rlhlvnntlce.mdlh full citation

republish, to post on servers or to
and/or a fee. Request permit
G

= A General Approach to Network Configuration Verification

Aarti Gupta

Princeton University

David Walker

Princeton University

change information about topology and paths to various destina-
tions. How they process this information and select paths to use for
traffic depends on their local configuration files. These files tend to

for humans to reason about them and even harder to reason about
the network behavior that emerges through their interactions.

As a result, configuration errors that lead to costly outages are
all-too-common. Indeed, every few months configuration-induced
outages at major networks make the news [1,

also show that configuration error is the biggest contributor
to such network outages [20, 26].

To address this problem, researchers have developed many tools
for finding errors in network configurations. We broadly classify
these tools along two dimensions: i) network design coverage—types
of network topologies, routing protocols and other features the tool
supports; and ii) data plane coverage—how many (or how much) of
the possible data planes the tool can analyze. The network control
plane dynamically generates different data planes as its environ-
ment (i.e., up/down status of links and routing announcements
received from external neighbors) changes. Tools with higher data
plane coverage can analyze more such data planes.

Some of the earliest network diagnostic tools such as traceroute
and ping can help find configuration errors by analyzing whether
and how a given packet reaches its destination. These tools are
simple and have high network design coverage—they can analyze

ding for any network topology or routing protocol. But they
poor data plane coverage—for each run, they analyze the
ing behavior for only a single packet for the data plane that
is currently installed in the network.

A more recent class of data plane analysis tools such as HSA [18]
and Veriflow [19] have better data plane coverage. They can analyze
reachability for all packets between two machines, rather than just
one packet. However, the data plane coverage of such tools is still
far less than ideal because they analyze only the data plane that
is currently installed in the network. That is, they can only find
errors after the network has produced the erroneous data plane.

Control plane analysis tools such as Batfish [13] can find con-
figuration errors proactively, before deploying potentially buggy
configurations. Batfish takes the network configuration (i.e., its con-
trol plane) and a specific environment (e.g., a link-failure scenario)
as input and analyzes the resulting data plane. This ability allows
operators to go beyond the current plane and ana fi
data planes that may arise under different environments. Still, each
run of Batfish allows users to explore at most one data plane, and
given the large number of possible environments, it is intractable
to guarantee correctness for all possible data plane:

Most recently, several control plane analysis tools have gone
from testing individual data planes to verification—that is, reasoning

SIGCOMM "17

Header Space Analysis: Static Checking For Networks

Peyman Kazemian George Varghese Nick McKeown
Stanford University UCSD and Yahoo! Research Stanford University

kazemian@stanford.edu varghe

Abstract

networks typically carry or deploy dozens

s and mechanisms simultaneously such as
MPLS, NAT, ACLs and route redistribution. Even when
individual protocols function correctly, failures can arise
from the complex interactions of their aggregate, requir-
ing network administrators to be masters of detail. Our
goal is to automatically find an important class of fail-
ures, regardless of the protocols running, for both opera-
tional and experimental networks.

To this end we developed a general and protocol-
agnostic framework, called Header Space Analysis
(HSA). Our formalism allows us to statically check net-

i ind configurations to identify an im-

ss of failures such as Reachability Failures,

Forwarding Loops and Traffic Isolation and Leakage

In HSA, protocol header fields are not first

instead we look at the entire packet header

as a concatenation of bits without any associated mean-

i apoint in the {0, 1}” space where L

s the maximum length of a packet header, and network-

ing boxes transform packets from one point in the space
to another point or set of points (multicast).

‘We created a library of tools, called Hassel, to imple-
ment our framework, and used it to analyze a variety of
networks and protocol:

Stanford University backbone network, and found all the
forwarding loops in less than 10 minutes, and ver
reachability constraints between two subnets in 13
onds. It also found a large and complex loop in an exper-
mental loose source routing protocol in 4 minutes.

1 Introduction

“Accidents will occur in the best-regulated
families” — Charles Dickens

In the beginning, a switch or router was breathtz
ingly simple. About all the device needed to do was in-
dex into a forwarding table using a destination addre:
and decide where to send the packet next. Over time,
forwarding grew more complicated. Middleboxes (e.g.
NAT and firewalls) and encapsulation mechanisms (e.g.
VLAN and MPLS) appeared to escape from IP’s lim-
itations: e.g., NAT bypasses address limits and MPLS

Forward Networks

.ucsd.edu nickm@stanford.edu

allows flexible routing. Further, new protocols for spe-
cific domains, such as data centers, WANs and wireless,
e greatly increased the complexity of packet forward-
ing. Today, there are over 6,000 Internet RFCs and it is
not unusual for a switch or router to handle ten or more
encapsulation formats simultaneously.
This complexity makes it daunting to operate a large
network today. Network operators require great sophisti-
ity of many intera
tocols and middlebo: The future is not any more ro:
- complexity today makes operators wary of trying new
they are available, for fear of break-
ing their network. Complexity also makes networks frag-
ile, and susceptible to problems where hosts become iso-
lated and unable to communicate. Debugging reacha-
bility problems is very time consuming. Even simple
questions are hard to answer, such as “Can Host A talk
1o Ho or “Can packets loop in my network.
“Can User A listen to communications between Users
B and C?”. These questions are especially hard to an-
swer in networks carrying multiple encapsulations and
containing boxes that filter packet:
Thus, our first goal is to help system administrators
statically analyze production networks today. We de-
ribe new methods and tools to provide formal answers
to these questions, and many other failure conditions, re-
gardless of the protocols running in the network.
Our second goal is to make it easier for

ce (e.g. a VLAN) cannot leak into another.
curity, and to help answer questions
“Can I prevent Host A from talking to Host B?”.
xample, imagine two health-care providers

the same physical network. HIPAA [20] rules req
that no information about a patient can be read by other
's. Thus a natural application of slicing is to place
each provider in a separate slice and guarantee that no
packet from one slice can be controlled by or read by the
other slice. We call this secure slicing. Secure slicing
be useful for banks as part of defense-in-depth,
and for cla ified users sharing the same
physical network. Our tools can verify that slices have

and commercially

VeriFlow: Verifying Network-Wide Invariants in Real Time

Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar, P. Brighten Godfrey
Department of Computer Science
University of lllinois at Urbana-Champaign
201 North Goodwin Avenue
Urbana, lllinois 61801-2302, USA
{khurshi1, wzhou10, caesar, pbg}@illinois.edu

ABSTRACT

are complex and prone to bugs.
n files and data-pla
onds to hours, and cannot detect

ck network-wide invariants in real time,
ate evolve i
xtremely low latency duw
formance flected.

a Mininet OpenFlow network and Route V
we find that Vi i

Categories and Subject Descriptors

3 [Computer-Communication Networks]: Network
twork management, Network monitoring

n, Management, Per

on hundreds or thousands of de-
and firewalls from different
ntial amount of effort

quired e networks’ correctness and secw

ever, faults in the network state arise commonly in p

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commer antage and that copi
bear this notice and the full citation on the first page. To copy otherwise, t
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a feq
HotSD! 3, 2012, Helsinki, Finland.
Copyright 2012 ACM 978-1-4503-1477-0/12/08 ...$15.0)

T
the development of network appli
to remain problematic since the
r, SDN allows
even multiple users to program the
imultaneously, potentially resultin
the intend

or more applications
One solution gorously check network
prior to deployment. Symbolic

ol p Moreover,
an operator w ire
must have a

g y not r n SDN net-
work where controllers can be operated by other parties [15].
Another approach atically analyze snapshots of the
e state [5,6,11,12]. These tools op-

thus only find bu, n.
ies the following question: Is it possible to
invariants, such as absence of routing
in real time as 1 g es? is would en-

to check updat

fic ng networks are not adequate u

they operate on timescales of seconds to hours [6,11,12] . As

current SDN controller: apable of handling around 30K
a sub-10ms

of seconds is not enough to ensure real-t;
will affect controller throughput immen;
n harm co ter f netwo
and reduce reaction time of protocols with real-time require-
ments such as routing and fast failover. Moreover, che
ing network-wide properties seems to require network-wide
ng churn of a la k
Hence, we need some way to per-

pro
that is achievable.

vility tests in [11] is 13 sec-

Veriflow

acquired by VMware

A General Approach to Network Configuration Analysis

Ari Fogel Stanley Fung Luis Pedrosa Meg Walraed-Sullivan

Ramesh Govindan ~ Ratul Mahajan ~ Todd Millstein

University of California, Los Angeles University of Southern California Microsoft Research

Abstract— We present an approach to detect network
configuration errors, which combines the benefits of two
prior approaches. Like prior techniques that analyze con-
figuration files, our approach can find errors proactively,
before the configuration is applied, and answer “what if”
quest Like prior techniques that analyze data-plane
snapshots, our approach can check a broad range of for-
warding properties and produce actual packets that vio-
late checked properties. We accomplish this combination
by faithfully deriving and then analyzing the data plane
that would emerge from the configuration. Our deriva-
tion of the data plane is fully declarative, employing a set
of logical relations that represent the control plane, the
data plane, and their relationship. Operators can query
these relations to understand identified errors and their
provenance. We use our approach to analyze two large
university networks with qualitatively different routing
designs and find many misconfigurations in each. Oper-
ators have confirmed the majority of these as errors and
have fixed their configurations accordingly.

1 Introduc

Configuring networks is arduous because policy require-
ments (for resource management, access control, etc.)
can be complex and configuration languages are lo
level. Consequently, configuration errors that compro-
mise availability, security, and performance are com-
mon [7, 21, 36]. In a recent incident, for example, a mis-
configuration led to a nation-wide outage that impacted
all customers of Time Warner for over an hour [3].

Prior approaches Researchers have developed two
main approaches to detect network configuration errors.
The first approach directly analyzes network configura-
tion files [2, 5, 7, 24, 25, 28, 34]. Such a static anal
can flag errors proactively, before a new configuration is
applied to the network, and it can naturally answer “what
if” questions with respect to different environments (i.e.,
failures and route announcement from neighbors)

However, configurations of real networks are complex,
with many interacting aspects (e.g., BGP, OSPF, ACLs,
VLANS, static routing, route redistribution); existing

tion analysis tools handle this complexity by
developing customized models for specific aspects of the
configuration or specific correctness properties. For in-
stance, rce [7] produces a normalized representation of
configuration that lets it check a range of properties that
correspond to common errors (e.g., “route validity” of
BGP, whether OSPF adjacencies are configured on both
ends, and that there are no duplicate router identifiers).
Similarly, FIREMAN [34] produces a “rule graph” struc-
ture to represent each ACL and analyzes these graph:
This selective focus makes configuration analysis practi-

1, but it also limits the scope of what can be check

Further, because many aspects of the configuration are
not analyzed, it can be difficult for operators to assess
how and whether identified errors ultimately impact for-
warding.

Researchers have recently proposed a nd approach
that can be used to detect configuration errors: analyzing
the data plane snapshots (i.e., forwarding behavior) of
the network [13, 14, 22, 37]. Unlike with static analysi:

any configuration error that causes undesirable forward-
ing can be precisely detected, because the data plane re-
flects the combined impact of all configuration aspect

Further, because the data plane has well-understood se-
mantics and can be efficiently encoded in various logics,
a wide range of forwarding properties can be concisely
expressed and scalably checked with off-the-shelf con-

nt solvers.

Unfortunately, analysis of data plane snapshots cannot
prevent errors proactively, before undesirable forwarding
occurs. Further, once a problem is flagged, the operators
still need to localize the responsible snippets of configu-
ration. This task is challenging because the relationship
between configuration snippets and forwarding behavior
i . The responsible snippet is not necessarily

USENIX Association 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI '15) 469

Intentionet

acquired by Amazon

and, vet...

networks still go down

Either network operators

Either network operators

use verification

use verification
but it is not enough or not "in the right way"

Either network operators

do not use verification

Either network operators

use verification
but it is not enough or not "in the right way"

do not use verification...
voluntarily or not

Either network operators

use verification
but it is not enough or not "in the right way"

do not use verification
voluntarily or not

What's missing?

Network verification ain't a panacea

Network verification ain't a panacea

Network verification. .. checks a restricted set of properties
and misses out on important ones

can be imprecise

over-/under-approximates behaviors

is not user-friendly
a perennial problem in formal methods

Verifying configurations was the easy part

My ongoing quest toward correct network operations

Formally Verified

More properties
beyond reachability

More coverage

beyond handcrafted models

Better usability

beyond human intervention

Verifying configurations was the easy part

My ongoing quest toward correct network operations

Formally Verified

More properties
beyond reachability

More coverage

beyond handcrafted models

Better usability

beyond human intervention

Existing verifiers typically only check
forwarding-level properties, in the steady state

Existing verifiers typically only check
forwarding-level properties, in the steady state

reachability, isolation,
specific path(s) being followed...

Existing verifiers typically only check
forwarding-level properties, in the steady state

once the network has converged,
and assuming it converges

Operators also often care about other types of properties,
as well as how long and how often these are violated

NSDI 2025

Tibor Schneider
ETH Ziirich

Abstract

To meet ever more stringent requirements, network operators
often need to reason about worst-case link loads. Doing
so involves analyzing traffic forwarding after failures and
BGP route changes. State-of-the-art systems identify failure
scenarios causing congestion, but they ignore route changes.

We present Velo, the first verification system that efficiently
finds maximum link loads under failures and route changes.
The key building block of Velo is its ability to massively re-
duce the gigantic space of possible route changes thanks to (i)
a router-based abstraction for route changes, (i1) a theoretical
characterization of scenarios leading to worst-case link loads,
and (i11) an approximation of input traffic matrices. We fully
implement and extensively evaluate Velo. Velo takes only a
few minutes to accurately compute all worst-case link loads
in large ISP networks. It thus provides operators with critical
support to robustify network configurations, improve network
management and take business decisions.

1 Introduction

Link loads—how much traffic crosses each link—are a key
indicator of network performance. High link loads, in partic-

Verifying maximum link loads in a changing world

Stefano Vissicchio
University College London

Laurent Vanbever
ETH Ziirich

iY

S 14 [

'; I :r

5 '

) "

o

s 0.5 _r' - up to 2 link failures only

§ up to 2 link failures and

—

Q up to 10 route changes

i 0 | | —
0 0.7 1 1.3

Maximum additional link load, normalized by capacity

Figure 1: Additional link loads can double due to route
changes compared with link failures only. This plot shows
the additional traffic on all the core links of an ISP network.

Reasoning about link loads 1s beyond the capabilities of
existing network verifiers. Most of them [1, 4, 14, 39, 40,
42,45,50] do not support performance requirements such as
maximum link loads, but restrict to functional requirements,
such as the absence of blackholes and forwarding loops.

A couple of recent contributions [7, 27, 44] focus on
assessing properties on link loads. Yet, they only consider
network failures and assume fixed external routes, fitting con-
trolled network environments such as data centers. For most
Internet-connected networks, both failures and route changes

M ¢ o T * 1 1°..1
PP A R AL S R [R e

Recent systems find worst-case link loads under failures.

traffic matrices # failures

Find worst-case loads under arbitrary failures.

% Traffic also depends on BGP routing inputs.

B T TTTTTITes e %%, o‘

QARC [1] or Yu [2]

[1] Kausik Subramanian et al. “Detecting network load violations for distributed control planes”. In: ACM SIGPLAN. 2020
[2] Ruihan Li et al. “A General and Efficient Approach to Verifying Traflic Load Properties under Arbitrary k Failures”. In: ACM SIGCOMM. 2024

[gnoring routing changes leads to underestimating worst-case loads.

Core links

100% -

507% -

- - === up to 2 link failures only
-I-‘
0% * : : : >
+0% +20% +707% +1307%

Maximum additional link load, normalized by capacity

[gnoring routing changes leads to underestimating worst-case loads.

1007% |

507% | ;

Core links

- === up to 2 link failures only
—— up to 2 link failures and

up to 10 routing changes

0% - | | l >
+07% +20% +70% +1307%

Maximum additional link load, normalized by capacity

The space of failures and route changes is huge and difficult to navigate.

traffic matrices # failures # BGP changes

The space of failures and route changes is huge and difficult to navigate.

traffic matrices # failures # BGP changes

* A destination can be advertised by
any subset of BGP neighbors.

The space of failures and route changes is huge and difficult to navigate.

traffic matrices # failures # BGP changes

* A destination can be advertised by
any subset of BGP neighbors.

e Failures create dependencies between destinations.

The space of failures and route changes is huge and difficult to navigate.

traffic matrices # failures # BGP changes

* A destination can be advertised by
any subset of BGP neighbors.

e Failures create dependencies between destinations.

e Over one million of destination prefixes.

Velo: Verifty maximum link loads under failures and routing changes

Search space reduction: Input size reduction:

A single egress router Cluster destination with
maximizes link loads. similar traffic patterns.

Velo finds the worst-case loads 1n 8 hours tor all 1790 links 1in an ISP.

Running time

1hour§
1 min E:

l1sec

Network size (

1000
edges)

>
1790

2 link failures and
10 route changes.

1 link failure and
10 route changes.

s Probabilistic Verification of Network Configurations

Timon Gehr

Samuel Steffen
ETH Zurich, Switzerland

samuel.steffen@inf.ethz.ch

SIGCOMM 2020

Laurent Vanbever
ETH Zurich, Switzerland
lvanbever@ethz.ch

ABSTRACT

Not all important network properties need to be enforced all the
time. Often, what matters instead is the fraction of time / probability
these properties hold. Computing the probability of a property in
a network relying on complex inter-dependent routing protocols
is challenging and requires determining all failure scenarios for
which the property is violated. Doing so at scale and accurately
goes beyond the capabilities of current network analyzers.

In this paper, we introduce NetDice, the first scalable and accu-
rate probabilistic network configuration analyzer supporting BGP,
OSPF, ECMP, and static routes. Our key contribution is an inference
algorithm to efficiently explore the space of failure scenarios. More
specifically, given a network configuration and a property ¢, our
algorithm automatically identifies a set of links whose failure is
provably guaranteed not to change whether ¢ holds. By pruning
these failure scenarios, NetDice manages to accurately approxi-
mate P(¢). NetDice supports practical properties and expressive
failure models including correlated link failures.

We implement NetDice and evaluate it on realistic configurations.
NetDice is practical: it can precisely verify probabilistic properties
in few minutes, even in large networks.

CCS CONCEPTS

« Mathematics of computing — Probabilistic inference prob-
lems; « Networks — Network properties.

KEYWORDS

Network analysis, Failures, Probabilistic inference, Cold edges

ACM Reference Format:

a I oY & A o o L T (. o VPR - o D [Y D O 2 1T Ar

ETH Zurich, Switzerland
timon.gehr@inf.ethz.ch

Petar Tsankov
ETH Zurich, Switzerland
petar.tsankov@inf.ethz.ch

Martin Vechev
ETH Zurich, Switzerland

martin.vechev@inf.ethz.ch
100 -
four 9s guarantee
random sampling
partial exploration

1072 1 this work

imprecision

10—4 do > Ny

10° 102 104 106 108 1010
states

Figure 1: Comparison of approaches for probabilistic network anal-
ysis in a network with 191 links and link failure probability 0.001.
The confidence for sampling (Hoeffding’s inequality) is & = 0.95.

1 INTRODUCTION

Ensuring network correctness is an important problem that has
received increased attention [1, 4, 12, 16, 19, 31, 40]. So far, existing
approaches have focused on verifying “hard” properties, producing
a binary answer of whether the property holds under all or a fixed
set of failure scenarios.

Besides hard properties, network operators often need to reason
about “soft” properties! which can be violated for a small frac-
tion of time (e.g. 0.01%). Among others, allowing properties to
be violated allows for cheaper network designs, e.g. by reducing
over-provisioning. Soft properties typically emerge when reasoning
about compliance with Service Level Agreements (SLAs). SLAs can
be defined with respect to any metric (e.g. path availability, average

]AAV\ PR nr\ﬂr\ni"l‘v‘r\ r\V\A VI ‘l'vnt];l';nﬂr\]]‘r V\/\r\nniivnr] P “V\;V\r\n”- T A e

Probabilistic Verification

O
l i ; l What is the probability of 'Ev/ ?

probabilistic | 3 Service Level Agreements (SLA)
high precision “99.99% reachability”
required

Traffic Engineering
“80% load-balanced”

“soft” properties

Attempts: Exploring Failures

Too expensive

Estimation via

Partial exploration

sampling
1107 359 738 M
#scenarios for four 9s, Hoeffding, a = 0.95

191 Iinks, Plink failure = 0.001

~600x reduction

Key Idea

shortest paths

Key Idea

shortest paths |
- 2
A

Key Idea

shortest paths

Key Idea

shortest paths I
- 2
A

Key Idea

shortest paths

Key Idea

shortest paths

Key Idea

| B
shortest paths
- 2
A
* cold edges

oV

Key Idea

How to find these?

]

shortest paths l
- 2
A

* cold edges
Scenarios with same forwarding graph (32 total):

oV

Runtime

Single-flow (e.g. Reachability)

Few minutes for 100s of links for four 9s

For 80% of scenarios, > 50% of links are §I<:

CoNEXT 2025

Transient Forwarding Anomalies and How to Find Them

ROLAND SCHMID, ETH Ziirich, Switzerland
TIBOR SCHNEIDER, ETH Ziirich, Switzerland
GEORGIA FRAGKOULI, ETH Ziirich, Switzerland
LAURENT VANBEVER, ETH Ziirich, Switzerland

Analyzing transient violations of reachability—that happen while routing protocols are re-converging—
helps in improving network availability and offering more precise SLAs. The key challenge is analyzing
transient violations accurately, as they can be short-lived, for all affected prefix destinations, and practically,
without worsening the network’s performance. Existing approaches fail to address at least one of these goals:
measurement approaches are accurate but only for the prefixes they can probe or observe traffic for, while
techniques that estimate the convergence time use the same crude proxy for all prefixes.

To achieve all three goals, we present TRIX, a system that infers transient violation times for BGP events
from logged routing events or collected BGP messages. TRIX" key insight is that we do not need to probe all
destinations if we use available information to infer the router-local forwarding state, for all destinations, and
reconstruct the network-wide violations from router-level state. However, the logged events contain control-
plane information that is inaccurate in terms of the content and the times of the forwarding updates, while
reconstructing network-wide violations requires reasoning about the flow of traffic through the network. TRIX
solves these challenges by simulating the BGP control-plane, modeling the FIB-update rate, and combining
the state across routers with propagation delays. To evaluate TRIX, we implement a testbed that relies on a
programmable switch and uses 12 real routers. Our evaluation shows that TRIX” inferred reachability violation
times are on average within 13-25 ms from the ground truth, and inference scales to large networks.

CCS Concepts: « Networks — Protocol testing and verification; Routing protocols; Network reliability;
Formal specifications.

Additional Key Words and Phrases: Forwarding Anomalies, Routing Convergence, Transient Violations

ACM Reference Format:

Roland Schmid, Tibor Schneider, Georgia Fragkouli, and Laurent Vanbever. 2025. Transient Forwarding
Anomalies and How to Find Them. Proc. ACM Netw. 3, CoNEXT2, Article 10 (June 2025), 23 pages. https:
//doi oro/10 1145/3730973

Most network verifiers can only assess correctness properties
when the network has converged

Corollary

As the network converges,
correctness properties might be violated

Research question

How long are these transient violations? How often do they appear?

Accurately estimating these violation times is hard

Routing events can affect any prefix(es)
many

Violations can be short-lived, or not

from milliseconds to many seconds

Accurately estimating these violation times is hard

Routing events can affect any prefix(es)
many

Violations can be short-lived, or not

from milliseconds to many seconds

Active probing is not realistic

Our system infers violation times accurately and for all prefixes,
from widely available control-plane logs

Our system infers violation times accurately and for all prefixes,
from widely available control-plane logs

BGP events, RIB events, FIB writes, ...

The key challenge is to bridge the gap between
control plane events and their effects in the data plane

Our system bridges this gap by modeling the RIB-to-FIB bottleneck

Our system achieves an average accuracy of 13-25ms

Verifying configurations was the easy part

My ongoing quest toward correct network operations

Formally Verified

More properties
beyond reachability

More coverage

beyond handcrafted models

Better usability

beyond human intervention

A network verifier can only be blindly trusted if
its analysis is sound and complete

sound Reports all bugs

complete Reports only bugs

Ensuring both is often impossible

verifiers need to all protocols and all their behaviors
accurately model BGP, OSPF, IS-IS, EIGRP, ...

for all vendors, devices and OSes
Cisco, Juniper, Brocade, Arista, ...

Ensuring both is often impossible

verifiers need to all protocols and all their behaviors
accurately model BGP, OSPF, IS-IS, EIGRP, ...

for all vendors, devices and OSes
Cisco, Juniper, Brocade, Arista, ...

"Beware of bugs in the above code;
| have only proved it correct,

nhot tried it."

—Donald Knuth

detect model build
inaccuracies accurate models

automatically

detect model build
inaccuracies accurate models

automatically

NSDI 2021

Abstract

Network analysis and verification tools are often a godsend
for network operators as they free them from the fear of in-
troducing outages or security breaches. As with any complex
software though, these tools can (and often do) have bugs.
For the operators, these bugs are not necessarily problematic
except if they affect the precision of the model as it applies
to their specific network. In that case, the tool output might
be wrong: it might fail to detect actual configuration errors
and/or report non-existing ones.

In this paper, we present Metha, a framework that sys-
tematically tests network analysis and verification tools for
bugs in their network models. Metha automatically generates
syntactically- and semantically-valid configurations; com-
pares the tool’s output to that of the actual router software;
and detects any discrepancy as a bug in the tool’s model. The
challenge in testing network analyzers this way is that a bug
may occur very rarely and only when a specific set of config-
uration statements is present. We address this challenge by
leveraging grammar-based fuzzing together with combinato-
rial testing to ensure thorough coverage of the search space
and by identifying the minimal set of statements triggering
the bug through delta debugging.

We implemented Metha and used it to test three well-known

R | h d 411 f~ .,1 rad 1 4, * k| Ve N 1 . 1

Metha: Network Verifiers Need To Be Correct Too!

ETH Ziirich

Riidiger Birkner® Tobias Brodmann® Petar Tsankov Laurent Vanbever Martin Vechev

*These authors contributed equally to this work.

This fictitious situation illustrates an intrinsic problem with
validation technologies: their results can only be completely
trusted if their analysis is sound and complete. As with any
complex software though, these tools can (and often do) have
bugs. To be fair, this is not surprising: building an accurate and
faithful network analysis tool is extremely difficult. Among
others, one not only has to precisely capture all the different
protocols’ behaviors, but also all of the quirks of their spe-
cific implementations. Unfortunately, every vendor, every OS,
every device can exhibit slightly different behaviors under
certain conditions. For all it takes, these behaviors might be
the results of bugs themselves. And yet, failing to accurately
capture these behaviors—as we show—can lead to incorrect
and possibly misleading analysis results.

A fundamental and practical research question is therefore:
How can developers make sure that their network analysis
and verification tools are correct?

Metha We introduce Metha, a system that thoroughly tests
network analysis and verification tools to find subtle bugs
in their network models using black-box differential testing.
Metha automatically finds model discrepancies by generating
input configurations and comparing the output of the tool un-
der test with the output produced by the actual router software.
For every discovered discrepancy, Metha provides a minimal

Metha systematically tests network verifiers
through automated configuration generation

Metha

‘w Supply configurations

and compare results
n)\ v
Tool under test —

Oracle

Metha: Automated Testing of Network Analyzers

1 Sensible configurations
satisfying configuration dependencies

2 Systematic exploration
covering the search space thoroughly

3 Actionable feedback

isolating the problematic statements

Metha found bugs in all three tested tools

Batfish 30 5
NV 30 5

C-BGP 3 0

25

25

detect model build
inaccuracies accurate models

automatically

Learning to Configure Computer Networks with
Neural Algorithmic Reasoning

Luca Beurer-Kellner®> Martin Vechev! Laurent Vanbever! Petar Veli¢kovié?
'ETH Zurich, Switzerland >DeepMind

https://github.com/eth-sri/learning-to-configure-networks

Abstract

We present a new method for scaling automatic configuration of computer
networks. The key idea is to relax the computationally hard search problem of
finding a configuration that satisfies a given specification into an approximate
objective amenable to learning-based techniques. Based on this idea, we train
a neural algorithmic model which learns to generate configurations likely to
(fully or partially) satisfy a given specification under existing routing protocols.
By relaxing the rigid satisfaction guarantees, our approach (i) enables greater
flexibility: it is protocol-agnostic, enables cross-protocol reasoning, and does not
depend on hardcoded rules; and (i1) finds configurations for much larger computer
networks than previously possible. Our learned synthesizer is up to 490x faster
than state-of-the-art SMT-based methods, while producing configurations which
on average satisfy more than 92% of the provided requirements.

1 Introduction

N eu rl PS 2 O 2 2 Configuring large-scale networks is a challenging and important task as network configuration
mistakes regularly lead to massive internet-wide outages affecting millions (resp. billions?) of
Internet users [35, 25]. Typically, network operators provide a router-level configuration W which,
after applying protocols such as shortest-path routing, induces a certain forwarding behaviour FwD
as illustrated in Figure 1. As this remains a challenging task, much recent research has focused on
automating configuration by leveraging synthesis techniques [15, 5, 31]: A synthesizer is used to

- - v -

Can we learn how to configure a network?

Yes, to an extent

Train a graph-based neural model
to invert network computations

Using generated pairs of (cfgs, specs)
simulate the cfg, extract the forwarding state

Fully automatic!

Neural-based configuration synthesis is much faster
but does not yet achieve 100% accuracy

Result BGP/OSPF configuration synthesis

 Learning-based synthesis is much faster than SOTA SMT tools (490x)
while still maintaining good consistency (92% of req.)

 Other benefits: UNSAT specification, sample variations

Table 3: Comparing consistency and synthesis time of our method (Neural) with the SMT-based
NetComplete. The notation ws 1o indicates the number of timed out runs out of 8 (25+ minutes).

Requirements NetComplete (s) Neural CPU (s) Speedup @ Consistency Full Matches

18.075+14.55 0.72s+0.54 25.2x 0.97+0.09 7/8
60.865+33.39 3.18s+4.32 19.1x 0.94+0.13 6/8
1389.485+312.58 71810 24.255+28.35 57.3x 0.99+0.03 7/8

247.695+436.90 1.25s+1.02 198.7x 0.96+0.08 6/8
>25m 8/8 TO 4.55s+4.30 329.8x 0.97+0.04 4/8
>25m8/8 TO 31.28s+28.53 48.0x 0.97+0.05 5/8

1416.835+235.251810 2.88s+1.66 0.92+0.06
>25m8/8 TO 6.53s+5.10 229.8x 0.95+0.05
>25m 8/8 TO 87.99s+141.97 17.0x 0.95+0.03

2 regs.

8 regs.

FRu|rfun|(R w

Verifying configurations was the easy part

My ongoing quest toward correct network operations

Formally Verified

More properties

N
&
D

(] ———\
=l AT A ekl
/ '.h‘ —AO N7 =}

beyond reachability

DTS |36
- - — /

A
L)
OLV //
; < I
</ 79
s
XV
: \ ‘ ~l
JIAL
2 A o
I
)

’!‘"* W/ 5:1"7-".—‘
VN S \=
i T mm e W

More coverage

o
WO

(- ~ S -
—i = /
N "‘Iluu'nk.-,”f‘ﬂ‘
./ A J O y \“
’ T\ BY S&\d =
\ \ >): A\)
‘!‘- 12)\ B2 -_AL_\J 7
|_ _zi 4 \\f S /]l A | 3
2~
&)

beyond handcrafted models

. Jf';»’ - | 4
A AN AN TS A
: iz N i :;Q» % ~dlay, B []]
C e NI
(@) el - Better usabilit
N X Tl ! IR %
. ‘ | | | ' S
== @, 1Ps=) |8 AR 55
== =l AR A |

beyond human intervention

To go mainstream, network verification needs to be more usable

Clarity what Deploy verified
to verity configurations

Simplify the "before” Simplify the "after”

Clarify what Deploy verified
to verify configurations

Simplify the "before”

NSDI 2020

Riidiger Birkner!

VETH Ziirich

Abstract

Network verification and configuration synthesis are promis-
ing approaches to make networks more reliable and secure
by enforcing a set of policies. However, these approaches re-
quire a formal and precise description of the intended network
behavior, imposing a major barrier to their adoption: network
operators are not only reluctant to write formal specifications,
but often do not even know what these specifications are.

We present Config2Spec, a system that automatically syn-
thesizes a formal specification (a set of policies) of a network
given its configuration and a failure model (e.g., up to two
link failures). A key technical challenge is to design a syn-
thesis algorithm which can efficiently explore the large space
of possible policies. To address this challenge, Config2Spec
relies on a careful combination of two well-known methods:
data plane analysis and control plane verification.

Experimental results show that Config2Spec scales to min-
ing specifications of large networks (>150 routers).

1 Introduction

Consider the task of a network operator who—tired of human-
induced network downtimes—decides to relv on formal meth-

Config2Spec: Mining Network Specifications from Network Configurations

Dana Drachsler-Cohen?* Laurent Vanbever! Martin Vechev!

2Technion

homegrown over years, by a team of network engineers (some
of which do not even work there anymore).

This situation illustrates the difficulty of writing network
specifications. Akin to software specifications, formal spec-
ifications are hard to write (as hard as writing the program
in the first place [20]), debug, and modify [2,21]. Yet, with-
out easier ways to provide network specifications, network
verification and synthesis are unlikely to get widely deployed.

Config2Spec We introduce Config2Spec, a system that auto-
matically mines a network’s specification from its configura-
tions and a failure model (e.g., up to k failures). Config2Spec
is precise: it returns all policies that hold under the failure
model (no false negatives) and only those (no false positives).

Challenges Mining precise network specifications is chal-
lenging as it involves exploring two exponential search spaces:
(i) the space of all possible policies, and (ii) the space of
all possible network-wide forwarding states. The challenge
stems from the fact that individually exploring each of the
search spaces can be prohibitive: a search for the true policies
1s hard since they are a small fraction of the policy space,
while a search for the violated policies is hard since these
require witnesses (data planes), which are often sparse.

Insights Config2Spec addresses the above challenges by com-

Internet2’s specification with its 10 routers
consists of ~4000 policy predicates.

Config2Spec mines the network’s full specification
from its configuration and the required failure tolerance

Input Output
Network Network
Configuration Specification

e . loadbalancing(4, p2)
— reachability(1, pl)
reachability(1l, p2)

== - Config2Spec -

Failure Model

reachability(4, p2)
reachability(5, p2)

Clarify what Deploy verified
to verify configurations

Simplify the "after”

SIGCOMM 2023

Tibor Schneider Roland Schmid
ETH Zurich ETH Zurich
sctibor@ethz.ch roschmi@ethz.ch

ABSTRACT

BGP reconfigurations are a daily occurrence for most network oper-
ators, especially in large networks. Yet, performing safe and robust
BGP reconfiguration changes is still an open problem. Few BGP
reconfiguration techniques exist, and they are either (i) unsafe, be-
cause they ignore transient states, which can easily lead to invariant
violations; or (ii) impractical, as they duplicate the entire routing
and forwarding states, and require special hardware.

In this paper, we introduce Chameleon, the first BGP reconfigu-
ration framework capable of maintaining correctness throughout
a reconfiguration campaign while relying on standard BGP func-
tionalities and minimizing state duplication. Akin to concurrency
coordination in distributed systems, Chameleon models the recon-
figuration process with happens-before relations. This modeling
allows us to capture the safety properties of transient BGP states.
We then use this knowledge to precisely control the BGP route
propagation and convergence, so that input invariants are provably
preserved at any time during the reconfiguration.

We fully implement Chameleon and evaluate it in both testbeds
and simulations, on real-world topologies and large-scale recon-
figuration scenarios. In most experiments, our system computes
reconfiguration plans within a minute, and performs them from
start to finish in a few minutes, with minimal overhead.

CCS CONCEPTS

- Networks — Network management; Routing protocols;
Network control algorithms; Network reliability.

KEYWORDS

Border Gateway Protocol (BGP), reconfiguration, network update,
convergence, scheduling

ACM Reference Format:

Taming the transient while reconfiguring BGP

University College London

Laurent Vanbever
ETH Zurich
lvanbever@ethz.ch

Stefano Vissicchio

s.vissicchio@ucl.ac.uk

Throughput [pkt/s] Snowcap [28]

16.5k _ Total traffic
Waypoint
Violations

N
>

. VY A NG

0 Time [s] 17— beresse
------ Egress e
- == Egress e;3
\ Chameleon
16.5k
-1
]
;. -------------- 1—-' ---------------------- eoa
: ===
oo I
0 — >
0 Time [s] 58

Figure 1: BGP reconfigurations often lead to disruptions,
even when using recent reconfiguration frameworks such as
Snowcap [28]. Here, Snowcap transiently violates two invari-
ants (reachability and waypointing). In contrast, Chameleon
reconfigures the network without violating any.

1 INTRODUCTION

Much has been written about network reconfigurations, their fre-
quency [12, 20, 28, 32, 36] and their disruptiveness [18, 22, 28]. Yet,
reconfiguration-induced downtimes still happen. In fact, Alibaba
recently stated that the majority of their network outages resulted
from configuration updates [22].

Among all reconfiguration scenarios, BGP ones are special be-

Network reconfiguration

Given specification ()

Given specification QO an initial configuration C@

final Cf

Given specification ()

Return

an initial configuration

final

Ci,Ca,Cp,...Cs

Not exactly a new problem...

Methods and Techniques

for Disruption-Free Network
Reconfiguration

LAURENT VANBEVER

OcToBRE 2012

Thése présentée en vue de l'obtention du grade
i de docteur en sciences de lingénieur

Ecole polytechnique de Louvain

Université catholique de Louvain

Ll
1

Methods and Techniques

for Disruption-Free Network
Reconfiguration

Existing techniques

m duplicate the entire
control plane

LAURENT VANBEVER

OcToBRE 2012

m temporarily "freeze" it" | e
(cannot react to failures)

Ecole polytechnique de Louvain

o Université catholique de Louvain

Chameleon reconfigures networks in-place
correctly, and within 5 minutes even for large networks

initial and final
configurations

1
1

(8

specification

Verifying configurations was the easy part

My ongoing quest toward correct network operations

Formally Verified

More properties
beyond reachability

More coverage

beyond handcrafted models

Better usability

beyond human intervention

Configuring a network is only a small part of
network operations as a whole

Configuring a network is only a small part of

network operations as a whole

Network
operations

Configure
Design
Monitor
Optimize
Secure

Troubleshoot

and many others...

many of these tasks are bottlenecked by human reasoning

Design
Monitor
Optimize
Secure

Troubleshoot

Similarly to configuring, one can approach these problems in
a model-based or a model-less way

Similarly to configuring, one can approach these problems in
a model-based or a model-less way

model-based model-less
IIAIII

model-based model-less

Guarantees

Coverage

Explainability

Overhead

Similarly to configuring, one can approach these problems in
a model-based or a model-less way

model-based model-less
IIAIII
Guarantees strong
Coverage reduced
Explainability high
Overhead high

upstream

Similarly to configuring, one can approach these problems in
a model-based or a model-less way

model-based model-less
IIAIII
Guarantees strong few
Coverage reduced high
Explainability high POOYr
Overhead high high

upstream downstream

Similarly to configuring, one can approach these problems in
a model-based or a model-less way

model-based model-less
IIAIII
Guarantees strong few
Coverage reduced high
Explainability high POOYr
Overhead high high

upstream downstream

Can we get the best of both worlds?

model-based X model-less

SIGCOMM 2025

Ioannis Protogeros

ETH Zirich
iprotogeros@ethz.ch

Abstract

The inherent complexity of operating modern network infrastruc-
tures has led to growing interest in using Large Language Models
(LLMs) to support network operators, particularly in the area of
Incident Management (IM). Yet, the absence of standardized bench-
marks for evaluating such systems poses challenges in tracking
progress, comparing approaches, and uncovering their limitations.
As LLM-based tools become widespread, there is a clear need for
a comprehensive benchmarking suite that reflects the diversity
and complexity of operational tasks encountered in real-world net-
works.

This poster outlines our vision for designing such a modular
benchmarking suite. We describe an approach for generating op-
erational tasks of varying complexity and discuss how to evaluate
LLMs on these tasks and assess system-level performance. As a pre-
liminary evaluation, we benchmark three LLMs — GPT-4.1, Gemini
2.5-Pro, and Claude 3.7 Sonnet — across over 100 test cases and two
pipeline variants.

CCS Concepts

« Networks — Network management; - Computing method-
ologies — Knowledge representation and reasoning; Artifi-
cial intelligence.

Keywords

Large Language Models, Network Management, Benchmarking,
Incident Management

ACM Reference Format:

Ioannis Protogeros and Laurent Vanbever. 2025. POSTER: Continual Bench-
marking of LLM-Based Systems on Networking Operations. In ACM SIG-
COMM 2025 Conference (SIGCOMM Posters and Demos °25), September 8—
11, 2025, Coimbra, Portugal. ACM, New York, NY, USA, 3 pages. https:
//doi.org/10.1145/3744969.3748425

POSTER: Continual Benchmarking of LLM-Based Systems on
Networking Operations

Laurent Vanbever
ETH Zirich
lvanbever@ethz.ch

well-defined tasks of varying complexity remains a challenging
task in the inherently complex setting of Network IM.

Focusing on the case of misconfigured networks disrupting their
intended behaviour, we pose the following Research Questions
(RQs) that capture the requirements of a benchmark in our task
context:

RQ1: How can we automatically generate realistic and complex
fault scenarios and quantify their impact on network behaviour?
Modeling disruption severity and resolution difficulty from mis-
configurations requires establishing nonlinear causal relationships.
Capturing this complexity is paramount for generating challenging
and meaningful test cases.

RQ2: (i) How should network state be encoded for LLM-based sys-
tems, and (ii) which solution pipelines are most effective? Various
approaches are being proposed, from the handling of raw network
data [4, 6] to the definition of structured workflows integrating
specialized tools [3]. These strategies require evaluation under a
unified and extensible testbed to ensure comparability and rele-
vance.

RQ3: How do we meaningfully assess an LLM’s proposed fix
against a "ground-truth", intended network behavior? Using data
to represent the network states, we need to distill metrics that
succinctly describe a remedy’s efficacy.

This work identifies key design considerations for automated
LLM-centered system evaluation in Network Incident Management.
We present a system that allows the continual incorporation of the
advancements related to these open research questions. We also
highlight the importance of extensibility when evaluating complex
workflows that cannot be effectively addressed with a monolithic
Input — LLM — Output design.

2 Proposed Framework and Design
Considerations

y

® © Qj Home | NetFabric X -
< C ° netfabric.ai Q@ 0 ®@P
QJ NetFabric Use Cases Team Careers News [Get In Touch j

Al for your network. Done right.

From Observability to Network Intelligence

Observabillity tells you what is happening. Network Intelligence tells you what matters, what's next, and
how to act. Powered by Al, for networks of today and tomorrow.

® %
| /\

Verifying configurations was the easy part

My ongoing quest toward correct network operations

Laurent Vanbever

nsg.ethz.ch | netfabric.ai

FMANO
Mon Sept 8 2025

http://nsg.ethz.ch
http://netfabric.ai

