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~7 hours

caused by a misconfiguration
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Networks are easy to break



Networks are easy to break

Networks are hard to repair



How come?

Networks are easy to break

Networks are hard to repair



Configuring networks is hard because of 

a fundamental semantic gap
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Human factors contribute to  

between 65% and 80% of all downtime incidents

Uptime Institute 2024 Outage Analysis
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Abstract— We present an approach to detect network
configuration errors, which combines the benefits of two
prior approaches. Like prior techniques that analyze con-
figuration files, our approach can find errors proactively,
before the configuration is applied, and answer “what if”
questions. Like prior techniques that analyze data-plane
snapshots, our approach can check a broad range of for-
warding properties and produce actual packets that vio-
late checked properties. We accomplish this combination
by faithfully deriving and then analyzing the data plane
that would emerge from the configuration. Our deriva-
tion of the data plane is fully declarative, employing a set
of logical relations that represent the control plane, the
data plane, and their relationship. Operators can query
these relations to understand identified errors and their
provenance. We use our approach to analyze two large
university networks with qualitatively different routing
designs and find many misconfigurations in each. Oper-
ators have confirmed the majority of these as errors and
have fixed their configurations accordingly.

1 Introduction

Configuring networks is arduous because policy require-
ments (for resource management, access control, etc.)
can be complex and configuration languages are low-
level. Consequently, configuration errors that compro-
mise availability, security, and performance are com-
mon [7, 21, 36]. In a recent incident, for example, a mis-
configuration led to a nation-wide outage that impacted
all customers of Time Warner for over an hour [3].

Prior approaches Researchers have developed two
main approaches to detect network configuration errors.
The first approach directly analyzes network configura-
tion files [2, 5, 7, 24, 25, 28, 34]. Such a static analysis
can flag errors proactively, before a new configuration is
applied to the network, and it can naturally answer “what
if” questions with respect to different environments (i.e.,
failures and route announcement from neighbors).

However, configurations of real networks are complex,
with many interacting aspects (e.g., BGP, OSPF, ACLs,
VLANs, static routing, route redistribution); existing
configuration analysis tools handle this complexity by
developing customized models for specific aspects of the
configuration or specific correctness properties. For in-
stance, rcc [7] produces a normalized representation of
configuration that lets it check a range of properties that
correspond to common errors (e.g., “route validity” of
BGP, whether OSPF adjacencies are configured on both
ends, and that there are no duplicate router identifiers).
Similarly, FIREMAN [34] produces a “rule graph” struc-
ture to represent each ACL and analyzes these graphs.
This selective focus makes configuration analysis practi-
cal, but it also limits the scope of what can be checked.
Further, because many aspects of the configuration are
not analyzed, it can be difficult for operators to assess
how and whether identified errors ultimately impact for-
warding.

Researchers have recently proposed a second approach
that can be used to detect configuration errors: analyzing
the data plane snapshots (i.e., forwarding behavior) of
the network [13, 14, 22, 37]. Unlike with static analysis,
any configuration error that causes undesirable forward-
ing can be precisely detected, because the data plane re-
flects the combined impact of all configuration aspects.
Further, because the data plane has well-understood se-
mantics and can be efficiently encoded in various logics,
a wide range of forwarding properties can be concisely
expressed and scalably checked with off-the-shelf con-
straint solvers.

Unfortunately, analysis of data plane snapshots cannot
prevent errors proactively, before undesirable forwarding
occurs. Further, once a problem is flagged, the operators
still need to localize the responsible snippets of configu-
ration. This task is challenging because the relationship
between configuration snippets and forwarding behavior
is complex. The responsible snippet is not necessarily
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Abstract

Today’s networks typically carry or deploy dozens
of protocols and mechanisms simultaneously such as
MPLS, NAT, ACLs and route redistribution. Even when
individual protocols function correctly, failures can arise
from the complex interactions of their aggregate, requir-
ing network administrators to be masters of detail. Our
goal is to automatically find an important class of fail-
ures, regardless of the protocols running, for both opera-
tional and experimental networks.

To this end we developed a general and protocol-
agnostic framework, called Header Space Analysis
(HSA). Our formalism allows us to statically check net-
work specifications and configurations to identify an im-
portant class of failures such as Reachability Failures,
Forwarding Loops and Traffic Isolation and Leakage
problems. In HSA, protocol header fields are not first
class entities; instead we look at the entire packet header
as a concatenation of bits without any associated mean-
ing. Each packet is a point in the {0, 1}L space where L
is the maximum length of a packet header, and network-
ing boxes transform packets from one point in the space
to another point or set of points (multicast).

We created a library of tools, called Hassel, to imple-
ment our framework, and used it to analyze a variety of
networks and protocols. Hassel was used to analyze the
Stanford University backbone network, and found all the
forwarding loops in less than 10 minutes, and verified
reachability constraints between two subnets in 13 sec-
onds. It also found a large and complex loop in an exper-
imental loose source routing protocol in 4 minutes.

1 Introduction
“Accidents will occur in the best-regulated
families” — Charles Dickens

In the beginning, a switch or router was breathtak-
ingly simple. About all the device needed to do was in-
dex into a forwarding table using a destination address,
and decide where to send the packet next. Over time,
forwarding grew more complicated. Middleboxes (e.g.,
NAT and firewalls) and encapsulation mechanisms (e.g.,
VLAN and MPLS) appeared to escape from IP’s lim-
itations: e.g., NAT bypasses address limits and MPLS

allows flexible routing. Further, new protocols for spe-
cific domains, such as data centers, WANs and wireless,
have greatly increased the complexity of packet forward-
ing. Today, there are over 6,000 Internet RFCs and it is
not unusual for a switch or router to handle ten or more
encapsulation formats simultaneously.

This complexity makes it daunting to operate a large
network today. Network operators require great sophisti-
cation to master the complexity of many interacting pro-
tocols and middleboxes. The future is not any more rosy
- complexity today makes operators wary of trying new
protocols, even if they are available, for fear of break-
ing their network. Complexity also makes networks frag-
ile, and susceptible to problems where hosts become iso-
lated and unable to communicate. Debugging reacha-
bility problems is very time consuming. Even simple
questions are hard to answer, such as “Can Host A talk
to Host B?” or “Can packets loop in my network?” or
“Can User A listen to communications between Users
B and C?”. These questions are especially hard to an-
swer in networks carrying multiple encapsulations and
containing boxes that filter packets.

Thus, our first goal is to help system administrators
statically analyze production networks today. We de-
scribe new methods and tools to provide formal answers
to these questions, and many other failure conditions, re-
gardless of the protocols running in the network.

Our second goal is to make it easier for system ad-
ministrators to guarantee isolation between sets of hosts,
users or traffic. Partitioning networks this way is usually
called “slicing”; VLANs are a simple example used to-
day. If configured correctly, we can be confident that traf-
fic in one slice (e.g. a VLAN) cannot leak into another.
This is useful for security, and to help answer questions
such as “Can I prevent Host A from talking to Host B?”.
For example, imagine two health-care providers using
the same physical network. HIPAA [20] rules require
that no information about a patient can be read by other
providers. Thus a natural application of slicing is to place
each provider in a separate slice and guarantee that no
packet from one slice can be controlled by or read by the
other slice. We call this secure slicing. Secure slicing
may also be useful for banks as part of defense-in-depth,
and for classified and unclassified users sharing the same
physical network. Our tools can verify that slices have
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ABSTRACT
Diagnosing problems in networks is a time-consuming and

error-prone process. Existing tools to assist operators pri-

marily focus on analyzing control plane configuration. Con-

figuration analysis is limited in that it cannot find bugs in

router software, and is harder to generalize across protocols

since it must model complex configuration languages and

dynamic protocol behavior.

This paper studies an alternate approach: diagnosing prob-

lems through static analysis of the data plane. This ap-

proach can catch bugs that are invisible at the level of con-

figuration files, and simplifies unified analysis of a network

across many protocols and implementations. We present

Anteater, a tool for checking invariants in the data plane.

Anteater translates high-level network invariants into in-

stances of boolean satisfiability problems (SAT), checks them

against network state using a SAT solver, and reports coun-

terexamples if violations have been found. Applied to a large

university network, Anteater revealed 23 bugs, including for-

warding loops and stale ACL rules, with only five false posi-

tives. Nine of these faults are being fixed by campus network

operators.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network

Operation; D.2.5 [Software Engineering]: Testing and

Debugging

General Terms
Algorithms, Reliability

Keywords
Data Plane Analysis, Network Troubleshooting, Boolean Sat-

isfiability
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1. INTRODUCTION
Modern enterprise networks are complex, incorporating

hundreds or thousands of network devices from multiple

vendors performing diverse codependent functions such as

routing, switching, and access control across physical and

virtual networks (VPNs and VLANs). As in any complex

computer system, enterprise networks are prone to a wide

range of errors [10, 11, 12, 14, 25, 32, 38, 41], such as miscon-

figuration, software bugs, or unexpected interactions across

protocols. These errors can lead to oscillations, black holes,

faulty advertisements, or route leaks that ultimately cause

disconnectivity and security vulnerabilities.

However, diagnosing problems in networks remains a black

art. Operators often rely on heuristics — sending probes, re-

viewing logs, even observing mailing lists and making phone

calls — that slow response to failures.1 To address this, au-

tomated tools for network diagnostics [14, 43] analyze con-

figuration files constructed by operators. While useful, these

tools have two limitations stemming from their analysis of

high-level configuration files. First, configuration analysis

cannot find bugs in router software, which interprets and

acts on those configuration files. Both commercial and open

source router software regularly exhibit bugs that affect net-
work availability or security [41] and have led to multiple

high-profile outages and vulnerabilities [11, 44]. Second,

configuration analysismust model complex configuration lan-
guages and dynamic protocol behavior in order to determine

the ultimate effect of a configuration. As a result, these tools

generally focus on checking correctness of a single protocol

such as BGP [14, 15] or firewalls [2, 43]. Such diagnosis will

be unable to reason about interactions that span multiple

protocols, and may have difficulty dealing with the diversity

in configuration languages from different vendors making up

typical networks.

We take a different and complementary approach. Instead

of diagnosing problems in the control plane, our goal is to

diagnose problems as close as possible to the network’s ac-
tual behavior through formal analysis of data plane state.

Data plane analysis has two benefits. First, by checking the

results of routing software rather than its inputs, we can

catch bugs that are invisible at the level of configuration

1As one example, a Cisco design technote advises that “Un-
fortunately, there is no systematic procedure to troubleshoot
an STP issue. ... Administrators generally do not have time
to look for the cause of the loop and prefer to restore con-
nectivity as soon as possible. The easy way out in this case
is to manually disable every port that provides redundancy
in the network. ... Each time you disable a port, check to
see if you have restored connectivity in the network.” [10]
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ABSTRACT
Networks are complex and prone to bugs. Existing tools
that check configuration files and data-plane state operate
o!ine at timescales of seconds to hours, and cannot detect
or prevent bugs as they arise.
Is it possible to check network-wide invariants in real time,

as the network state evolves? The key challenge here is to
achieve extremely low latency during the checks so that net-
work performance is not affected. In this paper, we present a
preliminary design, VeriFlow, which suggests that this goal
is achievable. VeriFlow is a layer between a software-defined
networking controller and network devices that checks for
network-wide invariant violations dynamically as each for-
warding rule is inserted. Based on an implementation using
a Mininet OpenFlow network and Route Views trace data,
we find that VeriFlow can perform rigorous checking within
hundreds of microseconds per rule insertion.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations—Network management, Network monitoring

General Terms
Algorithms, Design, Experimentation, Management, Perfor-
mance, Security, Verification

Keywords
Software-defined networking, OpenFlow, forwarding, debug-
ging, real time

1. INTRODUCTION
Network forwarding behaviors are complex, including code-

pendent functions running on hundreds or thousands of de-
vices, such as routers, switches, and firewalls from different
vendors. As a result, a substantial amount of effort is re-
quired to ensure networks’ correctness and security. How-
ever, faults in the network state arise commonly in practice,
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including loops, suboptimal routing, black holes and access
control violations that make services unavailable or prone
to attacks (e.g., DDoS attacks). Software-Defined Network-
ing (SDN) will ease the development of network applica-
tions, but bugs are likely to remain problematic since the
complexity of software will increase. Moreover, SDN allows
multiple applications or even multiple users to program the
same physical network simultaneously, potentially resulting
in conflicting rules that alter the intended behavior of one
or more applications [15].

One solution is to rigorously check network software or
configuration for bugs prior to deployment. Symbolic exe-
cution [7] can catch bugs through exploration of all possible
code paths, but is usually not tractable for large software.
Analysis of configuration files [8,18] is useful, but cannot find
bugs in router software and must be designed for specific
configuration languages and control protocols. Moreover,
using these approaches, an operator who wants to ensure
the network’s correctness must have access to the software
and configuration, which may not be true in an SDN net-
work where controllers can be operated by other parties [15].
Another approach is to statically analyze snapshots of the
network-wide data-plane state [5, 6, 11, 12]. These tools op-
erate o!ine, and thus only find bugs after they happen.

This paper studies the following question: Is it possible to
check network-wide invariants, such as absence of routing
loops, in real time as the network evolves? This would en-
able us to check updates before they hit the network, allow-
ing us to raise alarms, or even prevent bugs as they occur by
blocking problematic changes. However, existing techniques
for checking networks are not adequate for this purpose as
they operate on timescales of seconds to hours [6,11,12] 1. As
current SDN controllers are capable of handling around 30K
new flow installs per second while maintaining a sub-10ms
flow install time [16], rule verification latency in the order
of seconds is not enough to ensure real-time response, and
will affect controller throughput immensely. Delaying up-
dates for processing can harm consistency of network state,
and reduce reaction time of protocols with real-time require-
ments such as routing and fast failover. Moreover, check-
ing network-wide properties seems to require network-wide
state, and processing churn of a large network could intro-
duce scaling challenges. Hence, we need some way to per-
form this checking at very high speeds.

We present a preliminary design, VeriFlow, which demon-
strates that the goal of real-time verification is achievable.

1The average run time of reachability tests in [11] is 13 sec-
onds.
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ABSTRACT
We present Minesweeper, a tool to verify that a network satis-
!es a wide range of intended properties such as reachability or
isolation among nodes, waypointing, black holes, bounded path
length, load-balancing, functional equivalence of two routers, and
fault-tolerance. Minesweeper translates network con!guration !les
into a logical formula that captures the stable states to which the
network forwarding will converge as a result of interactions be-
tween routing protocols such as OSPF, BGP and static routes. It
then combines the formula with constraints that describe the in-
tended property. If the combined formula is satis!able, there exists
a stable state of the network in which the property does not hold.
Otherwise, no stable state (if any) violates the property. We used
Minesweeper to check four properties of 152 real networks from
a large cloud provider. We found 120 violations, some of which
are potentially serious security vulnerabilities. We also evaluated
Minesweeper on synthetic benchmarks, and found that it can verify
rich properties for networks with hundreds of routers in under !ve
minutes. This performance is due to a suite of model-slicing and
hoisting optimizations that we developed, which reduce runtime
by over 460x for large networks.

CCS CONCEPTS
• Networks→ Network reliability;

KEYWORDS
Network veri!cation; Control plane analysis
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1 INTRODUCTION
The control plane of traditional (non-SDN) networks is a complex
distributed system. Network devices use one or more protocols to
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exchange information about topology and paths to various destina-
tions. How they process this information and select paths to use for
tra"c depends on their local con!guration !les. These !les tend to
have thousands of lines of low-level directives, which makes it hard
for humans to reason about them and even harder to reason about
the network behavior that emerges through their interactions.

As a result, con!guration errors that lead to costly outages are
all-too-common. Indeed, every few months con!guration-induced
outages at major networks make the news [1, 5, 29, 32]. Systematic
surveys also show that con!guration error is the biggest contributor
to such network outages [20, 26].

To address this problem, researchers have developed many tools
for !nding errors in network con!gurations. We broadly classify
these tools along two dimensions: i ) network design coverage—types
of network topologies, routing protocols and other features the tool
supports; and ii ) data plane coverage—how many (or how much) of
the possible data planes the tool can analyze. The network control
plane dynamically generates di#erent data planes as its environ-
ment (i.e., up/down status of links and routing announcements
received from external neighbors) changes. Tools with higher data
plane coverage can analyze more such data planes.

Some of the earliest network diagnostic tools such as traceroute
and ping can help !nd con!guration errors by analyzing whether
and how a given packet reaches its destination. These tools are
simple and have high network design coverage—they can analyze
forwarding for any network topology or routing protocol. But they
have poor data plane coverage—for each run, they analyze the
forwarding behavior for only a single packet for the data plane that
is currently installed in the network.

A more recent class of data plane analysis tools such as HSA [18]
and Veri$ow [19] have better data plane coverage. They can analyze
reachability for all packets between two machines, rather than just
one packet. However, the data plane coverage of such tools is still
far less than ideal because they analyze only the data plane that
is currently installed in the network. That is, they can only !nd
errors after the network has produced the erroneous data plane.

Control plane analysis tools such as Bat!sh [13] can !nd con-
!guration errors proactively, before deploying potentially buggy
con!gurations. Bat!sh takes the network con!guration (i.e., its con-
trol plane) and a speci!c environment (e.g., a link-failure scenario)
as input and analyzes the resulting data plane. This ability allows
operators to go beyond the current data plane and analyze future
data planes that may arise under di#erent environments. Still, each
run of Bat!sh allows users to explore at most one data plane, and
given the large number of possible environments, it is intractable
to guarantee correctness for all possible data planes.

Most recently, several control plane analysis tools have gone
from testing individual data planes to veri!cation—that is, reasoning
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Abstract— We present an approach to detect network
configuration errors, which combines the benefits of two
prior approaches. Like prior techniques that analyze con-
figuration files, our approach can find errors proactively,
before the configuration is applied, and answer “what if”
questions. Like prior techniques that analyze data-plane
snapshots, our approach can check a broad range of for-
warding properties and produce actual packets that vio-
late checked properties. We accomplish this combination
by faithfully deriving and then analyzing the data plane
that would emerge from the configuration. Our deriva-
tion of the data plane is fully declarative, employing a set
of logical relations that represent the control plane, the
data plane, and their relationship. Operators can query
these relations to understand identified errors and their
provenance. We use our approach to analyze two large
university networks with qualitatively different routing
designs and find many misconfigurations in each. Oper-
ators have confirmed the majority of these as errors and
have fixed their configurations accordingly.

1 Introduction

Configuring networks is arduous because policy require-
ments (for resource management, access control, etc.)
can be complex and configuration languages are low-
level. Consequently, configuration errors that compro-
mise availability, security, and performance are com-
mon [7, 21, 36]. In a recent incident, for example, a mis-
configuration led to a nation-wide outage that impacted
all customers of Time Warner for over an hour [3].

Prior approaches Researchers have developed two
main approaches to detect network configuration errors.
The first approach directly analyzes network configura-
tion files [2, 5, 7, 24, 25, 28, 34]. Such a static analysis
can flag errors proactively, before a new configuration is
applied to the network, and it can naturally answer “what
if” questions with respect to different environments (i.e.,
failures and route announcement from neighbors).

However, configurations of real networks are complex,
with many interacting aspects (e.g., BGP, OSPF, ACLs,
VLANs, static routing, route redistribution); existing
configuration analysis tools handle this complexity by
developing customized models for specific aspects of the
configuration or specific correctness properties. For in-
stance, rcc [7] produces a normalized representation of
configuration that lets it check a range of properties that
correspond to common errors (e.g., “route validity” of
BGP, whether OSPF adjacencies are configured on both
ends, and that there are no duplicate router identifiers).
Similarly, FIREMAN [34] produces a “rule graph” struc-
ture to represent each ACL and analyzes these graphs.
This selective focus makes configuration analysis practi-
cal, but it also limits the scope of what can be checked.
Further, because many aspects of the configuration are
not analyzed, it can be difficult for operators to assess
how and whether identified errors ultimately impact for-
warding.

Researchers have recently proposed a second approach
that can be used to detect configuration errors: analyzing
the data plane snapshots (i.e., forwarding behavior) of
the network [13, 14, 22, 37]. Unlike with static analysis,
any configuration error that causes undesirable forward-
ing can be precisely detected, because the data plane re-
flects the combined impact of all configuration aspects.
Further, because the data plane has well-understood se-
mantics and can be efficiently encoded in various logics,
a wide range of forwarding properties can be concisely
expressed and scalably checked with off-the-shelf con-
straint solvers.

Unfortunately, analysis of data plane snapshots cannot
prevent errors proactively, before undesirable forwarding
occurs. Further, once a problem is flagged, the operators
still need to localize the responsible snippets of configu-
ration. This task is challenging because the relationship
between configuration snippets and forwarding behavior
is complex. The responsible snippet is not necessarily
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Abstract

Today’s networks typically carry or deploy dozens
of protocols and mechanisms simultaneously such as
MPLS, NAT, ACLs and route redistribution. Even when
individual protocols function correctly, failures can arise
from the complex interactions of their aggregate, requir-
ing network administrators to be masters of detail. Our
goal is to automatically find an important class of fail-
ures, regardless of the protocols running, for both opera-
tional and experimental networks.

To this end we developed a general and protocol-
agnostic framework, called Header Space Analysis
(HSA). Our formalism allows us to statically check net-
work specifications and configurations to identify an im-
portant class of failures such as Reachability Failures,
Forwarding Loops and Traffic Isolation and Leakage
problems. In HSA, protocol header fields are not first
class entities; instead we look at the entire packet header
as a concatenation of bits without any associated mean-
ing. Each packet is a point in the {0, 1}L space where L
is the maximum length of a packet header, and network-
ing boxes transform packets from one point in the space
to another point or set of points (multicast).

We created a library of tools, called Hassel, to imple-
ment our framework, and used it to analyze a variety of
networks and protocols. Hassel was used to analyze the
Stanford University backbone network, and found all the
forwarding loops in less than 10 minutes, and verified
reachability constraints between two subnets in 13 sec-
onds. It also found a large and complex loop in an exper-
imental loose source routing protocol in 4 minutes.

1 Introduction
“Accidents will occur in the best-regulated
families” — Charles Dickens

In the beginning, a switch or router was breathtak-
ingly simple. About all the device needed to do was in-
dex into a forwarding table using a destination address,
and decide where to send the packet next. Over time,
forwarding grew more complicated. Middleboxes (e.g.,
NAT and firewalls) and encapsulation mechanisms (e.g.,
VLAN and MPLS) appeared to escape from IP’s lim-
itations: e.g., NAT bypasses address limits and MPLS

allows flexible routing. Further, new protocols for spe-
cific domains, such as data centers, WANs and wireless,
have greatly increased the complexity of packet forward-
ing. Today, there are over 6,000 Internet RFCs and it is
not unusual for a switch or router to handle ten or more
encapsulation formats simultaneously.

This complexity makes it daunting to operate a large
network today. Network operators require great sophisti-
cation to master the complexity of many interacting pro-
tocols and middleboxes. The future is not any more rosy
- complexity today makes operators wary of trying new
protocols, even if they are available, for fear of break-
ing their network. Complexity also makes networks frag-
ile, and susceptible to problems where hosts become iso-
lated and unable to communicate. Debugging reacha-
bility problems is very time consuming. Even simple
questions are hard to answer, such as “Can Host A talk
to Host B?” or “Can packets loop in my network?” or
“Can User A listen to communications between Users
B and C?”. These questions are especially hard to an-
swer in networks carrying multiple encapsulations and
containing boxes that filter packets.

Thus, our first goal is to help system administrators
statically analyze production networks today. We de-
scribe new methods and tools to provide formal answers
to these questions, and many other failure conditions, re-
gardless of the protocols running in the network.

Our second goal is to make it easier for system ad-
ministrators to guarantee isolation between sets of hosts,
users or traffic. Partitioning networks this way is usually
called “slicing”; VLANs are a simple example used to-
day. If configured correctly, we can be confident that traf-
fic in one slice (e.g. a VLAN) cannot leak into another.
This is useful for security, and to help answer questions
such as “Can I prevent Host A from talking to Host B?”.
For example, imagine two health-care providers using
the same physical network. HIPAA [20] rules require
that no information about a patient can be read by other
providers. Thus a natural application of slicing is to place
each provider in a separate slice and guarantee that no
packet from one slice can be controlled by or read by the
other slice. We call this secure slicing. Secure slicing
may also be useful for banks as part of defense-in-depth,
and for classified and unclassified users sharing the same
physical network. Our tools can verify that slices have
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ABSTRACT
Diagnosing problems in networks is a time-consuming and

error-prone process. Existing tools to assist operators pri-

marily focus on analyzing control plane configuration. Con-

figuration analysis is limited in that it cannot find bugs in

router software, and is harder to generalize across protocols

since it must model complex configuration languages and

dynamic protocol behavior.

This paper studies an alternate approach: diagnosing prob-

lems through static analysis of the data plane. This ap-

proach can catch bugs that are invisible at the level of con-

figuration files, and simplifies unified analysis of a network

across many protocols and implementations. We present

Anteater, a tool for checking invariants in the data plane.

Anteater translates high-level network invariants into in-

stances of boolean satisfiability problems (SAT), checks them

against network state using a SAT solver, and reports coun-

terexamples if violations have been found. Applied to a large

university network, Anteater revealed 23 bugs, including for-

warding loops and stale ACL rules, with only five false posi-

tives. Nine of these faults are being fixed by campus network

operators.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network

Operation; D.2.5 [Software Engineering]: Testing and

Debugging

General Terms
Algorithms, Reliability

Keywords
Data Plane Analysis, Network Troubleshooting, Boolean Sat-

isfiability
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1. INTRODUCTION
Modern enterprise networks are complex, incorporating

hundreds or thousands of network devices from multiple

vendors performing diverse codependent functions such as

routing, switching, and access control across physical and

virtual networks (VPNs and VLANs). As in any complex

computer system, enterprise networks are prone to a wide

range of errors [10, 11, 12, 14, 25, 32, 38, 41], such as miscon-

figuration, software bugs, or unexpected interactions across

protocols. These errors can lead to oscillations, black holes,

faulty advertisements, or route leaks that ultimately cause

disconnectivity and security vulnerabilities.

However, diagnosing problems in networks remains a black

art. Operators often rely on heuristics — sending probes, re-

viewing logs, even observing mailing lists and making phone

calls — that slow response to failures.1 To address this, au-

tomated tools for network diagnostics [14, 43] analyze con-

figuration files constructed by operators. While useful, these

tools have two limitations stemming from their analysis of

high-level configuration files. First, configuration analysis

cannot find bugs in router software, which interprets and

acts on those configuration files. Both commercial and open

source router software regularly exhibit bugs that affect net-
work availability or security [41] and have led to multiple

high-profile outages and vulnerabilities [11, 44]. Second,

configuration analysismust model complex configuration lan-
guages and dynamic protocol behavior in order to determine

the ultimate effect of a configuration. As a result, these tools

generally focus on checking correctness of a single protocol

such as BGP [14, 15] or firewalls [2, 43]. Such diagnosis will

be unable to reason about interactions that span multiple

protocols, and may have difficulty dealing with the diversity

in configuration languages from different vendors making up

typical networks.

We take a different and complementary approach. Instead

of diagnosing problems in the control plane, our goal is to

diagnose problems as close as possible to the network’s ac-
tual behavior through formal analysis of data plane state.

Data plane analysis has two benefits. First, by checking the

results of routing software rather than its inputs, we can

catch bugs that are invisible at the level of configuration

1As one example, a Cisco design technote advises that “Un-
fortunately, there is no systematic procedure to troubleshoot
an STP issue. ... Administrators generally do not have time
to look for the cause of the loop and prefer to restore con-
nectivity as soon as possible. The easy way out in this case
is to manually disable every port that provides redundancy
in the network. ... Each time you disable a port, check to
see if you have restored connectivity in the network.” [10]
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ABSTRACT
Networks are complex and prone to bugs. Existing tools
that check configuration files and data-plane state operate
o!ine at timescales of seconds to hours, and cannot detect
or prevent bugs as they arise.
Is it possible to check network-wide invariants in real time,

as the network state evolves? The key challenge here is to
achieve extremely low latency during the checks so that net-
work performance is not affected. In this paper, we present a
preliminary design, VeriFlow, which suggests that this goal
is achievable. VeriFlow is a layer between a software-defined
networking controller and network devices that checks for
network-wide invariant violations dynamically as each for-
warding rule is inserted. Based on an implementation using
a Mininet OpenFlow network and Route Views trace data,
we find that VeriFlow can perform rigorous checking within
hundreds of microseconds per rule insertion.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations—Network management, Network monitoring

General Terms
Algorithms, Design, Experimentation, Management, Perfor-
mance, Security, Verification

Keywords
Software-defined networking, OpenFlow, forwarding, debug-
ging, real time

1. INTRODUCTION
Network forwarding behaviors are complex, including code-

pendent functions running on hundreds or thousands of de-
vices, such as routers, switches, and firewalls from different
vendors. As a result, a substantial amount of effort is re-
quired to ensure networks’ correctness and security. How-
ever, faults in the network state arise commonly in practice,
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including loops, suboptimal routing, black holes and access
control violations that make services unavailable or prone
to attacks (e.g., DDoS attacks). Software-Defined Network-
ing (SDN) will ease the development of network applica-
tions, but bugs are likely to remain problematic since the
complexity of software will increase. Moreover, SDN allows
multiple applications or even multiple users to program the
same physical network simultaneously, potentially resulting
in conflicting rules that alter the intended behavior of one
or more applications [15].

One solution is to rigorously check network software or
configuration for bugs prior to deployment. Symbolic exe-
cution [7] can catch bugs through exploration of all possible
code paths, but is usually not tractable for large software.
Analysis of configuration files [8,18] is useful, but cannot find
bugs in router software and must be designed for specific
configuration languages and control protocols. Moreover,
using these approaches, an operator who wants to ensure
the network’s correctness must have access to the software
and configuration, which may not be true in an SDN net-
work where controllers can be operated by other parties [15].
Another approach is to statically analyze snapshots of the
network-wide data-plane state [5, 6, 11, 12]. These tools op-
erate o!ine, and thus only find bugs after they happen.

This paper studies the following question: Is it possible to
check network-wide invariants, such as absence of routing
loops, in real time as the network evolves? This would en-
able us to check updates before they hit the network, allow-
ing us to raise alarms, or even prevent bugs as they occur by
blocking problematic changes. However, existing techniques
for checking networks are not adequate for this purpose as
they operate on timescales of seconds to hours [6,11,12] 1. As
current SDN controllers are capable of handling around 30K
new flow installs per second while maintaining a sub-10ms
flow install time [16], rule verification latency in the order
of seconds is not enough to ensure real-time response, and
will affect controller throughput immensely. Delaying up-
dates for processing can harm consistency of network state,
and reduce reaction time of protocols with real-time require-
ments such as routing and fast failover. Moreover, check-
ing network-wide properties seems to require network-wide
state, and processing churn of a large network could intro-
duce scaling challenges. Hence, we need some way to per-
form this checking at very high speeds.

We present a preliminary design, VeriFlow, which demon-
strates that the goal of real-time verification is achievable.

1The average run time of reachability tests in [11] is 13 sec-
onds.
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ABSTRACT
We present Minesweeper, a tool to verify that a network satis-
!es a wide range of intended properties such as reachability or
isolation among nodes, waypointing, black holes, bounded path
length, load-balancing, functional equivalence of two routers, and
fault-tolerance. Minesweeper translates network con!guration !les
into a logical formula that captures the stable states to which the
network forwarding will converge as a result of interactions be-
tween routing protocols such as OSPF, BGP and static routes. It
then combines the formula with constraints that describe the in-
tended property. If the combined formula is satis!able, there exists
a stable state of the network in which the property does not hold.
Otherwise, no stable state (if any) violates the property. We used
Minesweeper to check four properties of 152 real networks from
a large cloud provider. We found 120 violations, some of which
are potentially serious security vulnerabilities. We also evaluated
Minesweeper on synthetic benchmarks, and found that it can verify
rich properties for networks with hundreds of routers in under !ve
minutes. This performance is due to a suite of model-slicing and
hoisting optimizations that we developed, which reduce runtime
by over 460x for large networks.

CCS CONCEPTS
• Networks→ Network reliability;

KEYWORDS
Network veri!cation; Control plane analysis
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1 INTRODUCTION
The control plane of traditional (non-SDN) networks is a complex
distributed system. Network devices use one or more protocols to
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exchange information about topology and paths to various destina-
tions. How they process this information and select paths to use for
tra"c depends on their local con!guration !les. These !les tend to
have thousands of lines of low-level directives, which makes it hard
for humans to reason about them and even harder to reason about
the network behavior that emerges through their interactions.

As a result, con!guration errors that lead to costly outages are
all-too-common. Indeed, every few months con!guration-induced
outages at major networks make the news [1, 5, 29, 32]. Systematic
surveys also show that con!guration error is the biggest contributor
to such network outages [20, 26].

To address this problem, researchers have developed many tools
for !nding errors in network con!gurations. We broadly classify
these tools along two dimensions: i ) network design coverage—types
of network topologies, routing protocols and other features the tool
supports; and ii ) data plane coverage—how many (or how much) of
the possible data planes the tool can analyze. The network control
plane dynamically generates di#erent data planes as its environ-
ment (i.e., up/down status of links and routing announcements
received from external neighbors) changes. Tools with higher data
plane coverage can analyze more such data planes.

Some of the earliest network diagnostic tools such as traceroute
and ping can help !nd con!guration errors by analyzing whether
and how a given packet reaches its destination. These tools are
simple and have high network design coverage—they can analyze
forwarding for any network topology or routing protocol. But they
have poor data plane coverage—for each run, they analyze the
forwarding behavior for only a single packet for the data plane that
is currently installed in the network.

A more recent class of data plane analysis tools such as HSA [18]
and Veri$ow [19] have better data plane coverage. They can analyze
reachability for all packets between two machines, rather than just
one packet. However, the data plane coverage of such tools is still
far less than ideal because they analyze only the data plane that
is currently installed in the network. That is, they can only !nd
errors after the network has produced the erroneous data plane.

Control plane analysis tools such as Bat!sh [13] can !nd con-
!guration errors proactively, before deploying potentially buggy
con!gurations. Bat!sh takes the network con!guration (i.e., its con-
trol plane) and a speci!c environment (e.g., a link-failure scenario)
as input and analyzes the resulting data plane. This ability allows
operators to go beyond the current data plane and analyze future
data planes that may arise under di#erent environments. Still, each
run of Bat!sh allows users to explore at most one data plane, and
given the large number of possible environments, it is intractable
to guarantee correctness for all possible data planes.

Most recently, several control plane analysis tools have gone
from testing individual data planes to veri!cation—that is, reasoning
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Abstract

To meet ever more stringent requirements, network operators
often need to reason about worst-case link loads. Doing
so involves analyzing traffic forwarding after failures and
BGP route changes. State-of-the-art systems identify failure
scenarios causing congestion, but they ignore route changes.

We present Velo, the first verification system that efficiently
finds maximum link loads under failures and route changes.
The key building block of Velo is its ability to massively re-
duce the gigantic space of possible route changes thanks to (i)
a router-based abstraction for route changes, (ii) a theoretical
characterization of scenarios leading to worst-case link loads,
and (iii) an approximation of input traffic matrices. We fully
implement and extensively evaluate Velo. Velo takes only a
few minutes to accurately compute all worst-case link loads
in large ISP networks. It thus provides operators with critical
support to robustify network configurations, improve network
management and take business decisions.

1 Introduction

Link loads—how much traffic crosses each link—are a key
indicator of network performance. High link loads, in partic-
ular, increase the likelihood of congestion, packet drops, and
inflated delays. To meet stringent service-level agreements,
operators often need to reason about the worst-case load that
every link can realistically experience during network opera-
tion – e.g., to check that all loads are below a safety threshold,
and adapt routing configurations if they do not.

Identifying worst-case link loads is hard, though. Operators
often have tools to measure traffic and model traffic patterns,
even long term [26, 35]. However, determining worst-case
loads requires to scrutinize traffic forwarding for a huge range
of possible events. During network operation, links and nodes
fail, and BGP routes for external destinations appear, disap-
pear and change. Even a single failure or 3-4 route changes at
specific border routers can overload links, as our case study
on a real ISP network shows (§7).
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Figure 1: Additional link loads can double due to route
changes compared with link failures only. This plot shows
the additional traffic on all the core links of an ISP network.

Reasoning about link loads is beyond the capabilities of
existing network verifiers. Most of them [1, 4, 14, 39, 40,
42, 45, 50] do not support performance requirements such as
maximum link loads, but restrict to functional requirements,
such as the absence of blackholes and forwarding loops.

A couple of recent contributions [7, 27, 44] focus on
assessing properties on link loads. Yet, they only consider
network failures and assume fixed external routes, fitting con-
trolled network environments such as data centers. For most
Internet-connected networks, both failures and route changes
must be considered, jointly, to provide guarantees on link
loads. As an illustration, Figure 1 depicts the additional load
on the core links of a real ISP network, when simulating all
one and two link failures. In the presence of up to ten route
changes (solid curve), most links reach higher load than with-
out route changes (dashed curve), and their load can be twice
as big. In other words, ignoring route changes leads to vastly
underestimating maximum link loads.

This paper presents Velo, the first verification system that
efficiently computes the individual worst-case loads of all
links for arbitrary link failures and external route changes.
Velo does not depend on how paths are computed, and hence
it works in both traditional (e.g., IGP/BGP-based) and SDN
networks; it also supports typical traffic engineering technolo-
gies such as ECMP and tunnelling (e.g., MPLS).
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Recent systems !nd worst-case link loads under failures.
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[1] Kausik Subramanian et al. “Detecting network load violations for distributed control planes”. In: ACM SIGPLAN. 2020
[2] Ruihan Li et al. “A General and E"cient Approach to Verifying Tra"c Load Properties under Arbitrary k Failures”. In: ACM SIGCOMM. 2024

Find worst-case loads under arbitrary failures.

" Tra"c also depends on BGP routing inputs.
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Ignoring routing changes leads to underestimating worst-case loads.
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Velo: Verify maximum link loads under failures and routing changes

☼ "

Search space reduction:

A single egress router
maximizes link loads.

Input size reduction:

Cluster destination with
similar tra!c patterns.
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Velo !nds the worst-case loads in 3 hours for all 1790 links in an ISP.
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ABSTRACT
Not all important network properties need to be enforced all the
time. Often, what matters instead is the fraction of time / probability
these properties hold. Computing the probability of a property in
a network relying on complex inter-dependent routing protocols
is challenging and requires determining all failure scenarios for
which the property is violated. Doing so at scale and accurately
goes beyond the capabilities of current network analyzers.

In this paper, we introduce NetDice, the "rst scalable and accu-
rate probabilistic network con"guration analyzer supporting BGP,
OSPF, ECMP, and static routes. Our key contribution is an inference
algorithm to e#ciently explore the space of failure scenarios. More
speci"cally, given a network con"guration and a property ω, our
algorithm automatically identi"es a set of links whose failure is
provably guaranteed not to change whether ω holds. By pruning
these failure scenarios, NetDice manages to accurately approxi-
mate P(ω). NetDice supports practical properties and expressive
failure models including correlated link failures.

We implement NetDice and evaluate it on realistic con"gurations.
NetDice is practical: it can precisely verify probabilistic properties
in few minutes, even in large networks.

CCS CONCEPTS
• Mathematics of computing → Probabilistic inference prob-
lems; • Networks → Network properties.
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Figure 1: Comparison of approaches for probabilistic network anal-
ysis in a network with 191 links and link failure probability 0.001.
The con"dence for sampling (Hoe!ding’s inequality) is ε = 0.95.

1 INTRODUCTION
Ensuring network correctness is an important problem that has
received increased attention [1, 4, 12, 16, 19, 31, 40]. So far, existing
approaches have focused on verifying “hard” properties, producing
a binary answer of whether the property holds under all or a "xed
set of failure scenarios.

Besides hard properties, network operators often need to reason
about “soft” properties1 which can be violated for a small frac-
tion of time (e.g. 0.01%). Among others, allowing properties to
be violated allows for cheaper network designs, e.g. by reducing
over-provisioning. Soft properties typically emerge when reasoning
about compliance with Service Level Agreements (SLAs). SLAs can
be de"ned with respect to any metric (e.g. path availability, average
hop count, capacity) and are traditionally measured in “nines”: For
instance, an IP VPN provider might guarantee internal path avail-
ability between its customers for 99.999% ("ve 9s) of the time, and
two-path availability for 99.99% (four 9s).

Similarly to verifying hard properties, computing the probabil-
ity of a soft property requires analyzing the network forwarding
behavior emerging from a network con"guration (i.e. the network
control plane) in many, possibly all, environments (e.g. failure sce-
narios). A key di!erence is that verifying a hard property aims at
checking the absence of a counter-example (e.g. a failure scenario
in which the property is violated), not at computing how many

1This need is exempli"ed by a survey we conducted amongst network operators (52
answers). In this survey, 94% of operators indicated that they care about probabilistic
network analysis. At the same time, 83% of them indicated that it is currently di#cult
to do so. See App. A.1 for details.
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What is the probability of           ?

Service Level Agreements (SLA)
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Traffic Engineering
“80% load-balanced”

“soft” properties
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required



Attempts: Exploring Failures

Partial exploration Estimation via 
sampling

#scenarios for four 9s,
191 links, plink failure = 0.001

1 107 359 738 M

Hoeffding, α = 0.95

1 854

Too expensive

≈600x reduction
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Few minutes for 100s of links for four 9s
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Transient Forwarding Anomalies and How to Find Them
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LAURENT VANBEVER, ETH Zürich, Switzerland

Analyzing transient violations of reachability—that happen while routing protocols are re-converging—
helps in improving network availability and o!ering more precise SLAs. The key challenge is analyzing
transient violations accurately, as they can be short-lived, for all a!ected pre"x destinations, and practically,
without worsening the network’s performance. Existing approaches fail to address at least one of these goals:
measurement approaches are accurate but only for the pre"xes they can probe or observe tra#c for, while
techniques that estimate the convergence time use the same crude proxy for all pre"xes.

To achieve all three goals, we present TRIX, a system that infers transient violation times for BGP events
from logged routing events or collected BGP messages. TRIX’ key insight is that we do not need to probe all
destinations if we use available information to infer the router-local forwarding state, for all destinations, and
reconstruct the network-wide violations from router-level state. However, the logged events contain control-
plane information that is inaccurate in terms of the content and the times of the forwarding updates, while
reconstructing network-wide violations requires reasoning about the $ow of tra#c through the network. TRIX
solves these challenges by simulating the BGP control-plane, modeling the FIB-update rate, and combining
the state across routers with propagation delays. To evaluate TRIX, we implement a testbed that relies on a
programmable switch and uses 12 real routers. Our evaluation shows that TRIX’ inferred reachability violation
times are on average within 13–25ms from the ground truth, and inference scales to large networks.

CCS Concepts: • Networks → Protocol testing and veri!cation; Routing protocols; Network reliability;
Formal speci!cations.

Additional Key Words and Phrases: Forwarding Anomalies, Routing Convergence, Transient Violations

ACM Reference Format:
Roland Schmid, Tibor Schneider, Georgia Fragkouli, and Laurent Vanbever. 2025. Transient Forwarding
Anomalies and How to Find Them. Proc. ACM Netw. 3, CoNEXT2, Article 10 (June 2025), 23 pages. https:
//doi.org/10.1145/3730973

1 Introduction
As modern applications demand increasingly better performance and higher-availability SLAs,
network operators strive to squeeze more performance out of their networks, e.g., by optimizing
router con"gurations. Key to this is understanding network performance not only in steady rout-
ing/forwarding states but also during transient states, i.e., when the network converges following a
routing event. Most of these transient states are harmless in the sense that they do not cause reach-
ability violations—tra#c still makes it to the destination. Some transient states, however, disrupt
reachability by creating black holes or forwarding loops, as observed in operational networks [15].
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How long are these transient violations? How often do they appear?

Research question
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Active probing is not realistic



Our system infers violation times accurately and for all prefixes,  

from widely available control-plane logs



BGP events, RIB events, FIB writes, …

Our system infers violation times accurately and for all prefixes,  

from widely available control-plane logs



The key challenge is to bridge the gap between 

control plane events and their effects in the data plane (if any)



Our system bridges this gap by modeling the RIB-to-FIB bottleneck

● We model the hardware bottleneck  at the 
FIB with a simple queuing model:

● For illustration purposes, we set T_delay = 0.

Insight #2: Modeling the hardware bottleneck at the FIB.



Our system achieves an average accuracy of 13–25ms
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Ensuring both is often impossible (Rice's theorem)

verifiers need to all protocols and all their behaviors

BGP, OSPF, IS-IS, EIGRP, …

for all vendors, devices and OSes

Cisco, Juniper, Brocade, Arista, …

… including any bugs

accurately model…



"Beware of bugs in the above code;  

"I have only proved it correct,  

"not tried it."

—Donald Knuth

Photo: IEEE Computer Society
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ETH Zürich

Abstract

Network analysis and verification tools are often a godsend
for network operators as they free them from the fear of in-
troducing outages or security breaches. As with any complex
software though, these tools can (and often do) have bugs.
For the operators, these bugs are not necessarily problematic
except if they affect the precision of the model as it applies
to their specific network. In that case, the tool output might
be wrong: it might fail to detect actual configuration errors
and/or report non-existing ones.

In this paper, we present Metha, a framework that sys-
tematically tests network analysis and verification tools for
bugs in their network models. Metha automatically generates
syntactically- and semantically-valid configurations; com-
pares the tool’s output to that of the actual router software;
and detects any discrepancy as a bug in the tool’s model. The
challenge in testing network analyzers this way is that a bug
may occur very rarely and only when a specific set of config-
uration statements is present. We address this challenge by
leveraging grammar-based fuzzing together with combinato-
rial testing to ensure thorough coverage of the search space
and by identifying the minimal set of statements triggering
the bug through delta debugging.

We implemented Metha and used it to test three well-known
tools. In all of them, we found multiple (new) bugs in their
models, most of which were confirmed by the developers.

1 Introduction

It’s Friday night and you are about to push an important
(network) configuration update in production. Usually, you
would feel terribly nervous doing so as there is always the
possibility that you may have missed something. You are only
too aware that misconfigurations happen frequently and can
lead to major network outages [22,24,27]. Tonight though you
feel confident when pressing “deploy” as you have confirmed
the correctness of your configuration update using a state-of-
the-art configuration verifier. A few minutes later, your phone
rings: none of your customers can reach the Internet anymore.

This fictitious situation illustrates an intrinsic problem with
validation technologies: their results can only be completely
trusted if their analysis is sound and complete. As with any
complex software though, these tools can (and often do) have
bugs. To be fair, this is not surprising: building an accurate and
faithful network analysis tool is extremely difficult. Among
others, one not only has to precisely capture all the different
protocols’ behaviors, but also all of the quirks of their spe-
cific implementations. Unfortunately, every vendor, every OS,
every device can exhibit slightly different behaviors under
certain conditions. For all it takes, these behaviors might be
the results of bugs themselves. And yet, failing to accurately
capture these behaviors—as we show—can lead to incorrect
and possibly misleading analysis results.

A fundamental and practical research question is therefore:
How can developers make sure that their network analysis
and verification tools are correct?
Metha We introduce Metha, a system that thoroughly tests
network analysis and verification tools to find subtle bugs
in their network models using black-box differential testing.
Metha automatically finds model discrepancies by generating
input configurations and comparing the output of the tool un-
der test with the output produced by the actual router software.
For every discovered discrepancy, Metha provides a minimal
configuration that helps developers pinpoint the bug. Later
on, these configurations can be used to build up an adequate
test suite for current and future network tools.
Challenges Precisely identifying bugs in network analyzers’
models is challenging for at least three reasons. First, the
search space of possible configurations is gigantic: there are
hundreds of configuration statements, each of which can take
many possible parameters. And yet, as our analysis reveals,
most of the bugs only manifest themselves when specific
configuration statements/values are present. Second, system-
atically exploring the search space is highly non-trivial (in-
dependently of its size) as one not only needs to generate
syntactically-valid configurations, but also semantically-valid
ones that involve all features and their interactions. Failing
to do so could lead to miss bugs, hence lowering coverage.



Metha systematically tests network verifiers 

through automated configuration generation
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Tool under test Oracle

Supply configurations

and compare results



Metha: Automated Testing of Network Analyzers
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Abstract

We present a new method for scaling automatic configuration of computer
networks. The key idea is to relax the computationally hard search problem of
finding a configuration that satisfies a given specification into an approximate
objective amenable to learning-based techniques. Based on this idea, we train
a neural algorithmic model which learns to generate configurations likely to
(fully or partially) satisfy a given specification under existing routing protocols.
By relaxing the rigid satisfaction guarantees, our approach (i) enables greater
flexibility: it is protocol-agnostic, enables cross-protocol reasoning, and does not
depend on hardcoded rules; and (ii) finds configurations for much larger computer
networks than previously possible. Our learned synthesizer is up to 490⌐ faster
than state-of-the-art SMT-based methods, while producing configurations which
on average satisfy more than 92% of the provided requirements.

1 Introduction

Configuring large-scale networks is a challenging and important task as network configuration
mistakes regularly lead to massive internet-wide outages affecting millions (resp. billions2) of
Internet users [35, 25]. Typically, network operators provide a router-level configuration W which,
after applying protocols such as shortest-path routing, induces a certain forwarding behaviour FWD
as illustrated in Figure 1. As this remains a challenging task, much recent research has focused on
automating configuration by leveraging synthesis techniques [15, 5, 31]: A synthesizer is used to
automatically generate a router-level configuration W that, after applying routing protocols results in
forwarding behavior that satisfies a given specification S on how traffic should be routed.

SMT-based Synthesis Due to the hardness of the configuration synthesis problem [7], many
effective tools in this domain [15, 14] resort to satisfiability modulo theory (SMT) solvers, which
employ search-based procedures to find a solution to a set of first-order logic constraints. This enables
comprehensive and exact synthesis by modelling network behavior in first-order logic. However,
these tools are typically protocol-specific, hand-coded, and can exhibit discrepancies in behavior
when compared to actual router hardware [6]. Most importantly, however, they can be very slow or
fail to complete for large networks. For example, the state-of-the-art SMT-based tool NetComplete
[15] requires more than 6 hours to synthesize a configuration for a network with 64 nodes, for which
other SMT-based tools like SyNET [14] take even longer (> 24 hours) [15]. Non-SMT-based tools
such as Propane [4] or Zeppelin [39] have achieved better performance, but at the cost of generality.
⌐Correspondence to luca.beurer-kellner@inf.ethz.ch.
2As of 2021, Facebook reportedly has 2.9 billion monthly active users [1].

36th Conference on Neural Information Processing Systems (NeurIPS 2022).
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Can we learn how to configure a network? 

Yes, to an extent

Train a graph-based neural model

Using generated pairs of (cfgs, specs)

to invert network computations

simulate the cfg, extract the forwarding state

Fully automatic!



Neural-based configuration synthesis is much faster 

but does not yet achieve 100% accuracy
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Abstract
Network verification and configuration synthesis are promis-
ing approaches to make networks more reliable and secure
by enforcing a set of policies. However, these approaches re-
quire a formal and precise description of the intended network
behavior, imposing a major barrier to their adoption: network
operators are not only reluctant to write formal specifications,
but often do not even know what these specifications are.

We present Config2Spec, a system that automatically syn-
thesizes a formal specification (a set of policies) of a network
given its configuration and a failure model (e.g., up to two
link failures). A key technical challenge is to design a syn-
thesis algorithm which can efficiently explore the large space
of possible policies. To address this challenge, Config2Spec
relies on a careful combination of two well-known methods:
data plane analysis and control plane verification.

Experimental results show that Config2Spec scales to min-
ing specifications of large networks (>150 routers).

1 Introduction

Consider the task of a network operator who—tired of human-
induced network downtimes—decides to rely on formal meth-
ods to verify her network-wide configurations [4,14,22,30] or
to synthesize them automatically [5, 9, 10, 28, 29]. The opera-
tor quickly realizes that both verifiers and synthesizers require
a specification of the correct intended network-wide behavior.
A few generic requirements quickly come to mind: surely
she wants her network to ensure reachability. At the same
time, she realizes that her network does way more than just
ensuring reachability. Among others, it needs to enforce load
balancing for popular destinations, provide isolation between
customers, drop traffic for suspicious prefixes, and reroute
business traffic via predefined waypoints—all these under
failures and over hundreds of devices. Writing the precise
specification seems daunting, especially as most of it has been

⇤Work done while at ETH Zürich.

homegrown over years, by a team of network engineers (some
of which do not even work there anymore).

This situation illustrates the difficulty of writing network
specifications. Akin to software specifications, formal spec-
ifications are hard to write (as hard as writing the program
in the first place [20]), debug, and modify [2, 21]. Yet, with-
out easier ways to provide network specifications, network
verification and synthesis are unlikely to get widely deployed.

Config2Spec We introduce Config2Spec, a system that auto-
matically mines a network’s specification from its configura-
tions and a failure model (e.g., up to k failures). Config2Spec
is precise: it returns all policies that hold under the failure
model (no false negatives) and only those (no false positives).

Challenges Mining precise network specifications is chal-
lenging as it involves exploring two exponential search spaces:
(i) the space of all possible policies, and (ii) the space of
all possible network-wide forwarding states. The challenge
stems from the fact that individually exploring each of the
search spaces can be prohibitive: a search for the true policies
is hard since they are a small fraction of the policy space,
while a search for the violated policies is hard since these
require witnesses (data planes), which are often sparse.

Insights Config2Spec addresses the above challenges by com-
bining the strengths of data plane analysis and control plane
verification. Data plane analysis enables us to compute the set
of policies that hold for a single data plane, thereby providing
an efficient way of pruning policies. On the other hand, con-
trol plane verification is an efficient way of validating that a
single policy holds for all the data planes. Config2Spec com-
bines the two approaches to prune the large space of policies
through sampling and data plane analysis and then, to avoid
the need of exploring all data planes, validating the remain-
ing policies with control plane verification. The key insight
is to dynamically identify the approach providing for better
progress. We design predictors which rely on past iterations
and the failure model to switch between the two approaches.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation    969
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ABSTRACT
BGP recon!gurations are a daily occurrence for most network oper-
ators, especially in large networks. Yet, performing safe and robust
BGP recon!guration changes is still an open problem. Few BGP
recon!guration techniques exist, and they are either (i) unsafe, be-
cause they ignore transient states, which can easily lead to invariant
violations; or (ii) impractical, as they duplicate the entire routing
and forwarding states, and require special hardware.

In this paper, we introduce Chameleon, the !rst BGP recon!gu-
ration framework capable of maintaining correctness throughout
a recon!guration campaign while relying on standard BGP func-
tionalities and minimizing state duplication. Akin to concurrency
coordination in distributed systems, Chameleon models the recon-
!guration process with happens-before relations. This modeling
allows us to capture the safety properties of transient BGP states.
We then use this knowledge to precisely control the BGP route
propagation and convergence, so that input invariants are provably
preserved at any time during the recon!guration.

We fully implement Chameleon and evaluate it in both testbeds
and simulations, on real-world topologies and large-scale recon-
!guration scenarios. In most experiments, our system computes
recon!guration plans within a minute, and performs them from
start to !nish in a few minutes, with minimal overhead.

CCS CONCEPTS
• Networks → Network management; Routing protocols;
Network control algorithms; Network reliability.

KEYWORDS
Border Gateway Protocol (BGP), recon!guration, network update,
convergence, scheduling
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Figure 1: BGP recon!gurations often lead to disruptions,
even when using recent recon!guration frameworks such as
Snowcap [28]. Here, Snowcap transiently violates two invari-
ants (reachability and waypointing). In contrast, Chameleon
recon!gures the network without violating any.

1 INTRODUCTION
Much has been written about network recon!gurations, their fre-
quency [12, 20, 28, 32, 36] and their disruptiveness [18, 22, 28]. Yet,
recon!guration-induced downtimes still happen. In fact, Alibaba
recently stated that the majority of their network outages resulted
from con!guration updates [22].

Among all recon!guration scenarios, BGP ones are special be-
cause they are both particularly frequent and potentially highly
disruptive. In large networks, for instance, operators recon!gure
BGP up to 20 times a day on average [36]. Also, since BGP controls
routing to (and from) remote destinations, recon!guring it can have
Internet-wide consequences. The recent Microsoft outage in Janu-
ary 2023 illustrates this perfectly: Microsoft Azure services were
indeed unavailable for 90 minutes due to a BGP recon!guration [4].

Perhaps surprisingly, no existing network recon!guration frame-
work enables both safe (in a way that preserves network invariants)
and practical (in a way that works operationally) BGP recon!gura-
tions.Most previousworks targeted other recon!guration scenarios,
such as networks running purely intra-domain routing protocols
(OSPF or IS-IS) or SDN/OpenFlow [7]. A few techniques [2, 28, 36]
did focus on BGP recon!guration, but they su"er from fundamen-
tal limitations. Speci!cally, “Shadow Con!gurations” [2] and BGP
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Existing techniques…

duplicate the entire  

control plane;

temporarily "freeze" it" 

(cannot react to failures)



Chameleon issues temporary BGP commands.
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9

Chameleon reconfigures networks in-place, one router at a time,  

correctly, and within 5 minutes even for large networks
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model-based model-less⨉

Can we get the best of both worlds?
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Abstract
The inherent complexity of operating modern network infrastruc-
tures has led to growing interest in using Large Language Models
(LLMs) to support network operators, particularly in the area of
Incident Management (IM). Yet, the absence of standardized bench-
marks for evaluating such systems poses challenges in tracking
progress, comparing approaches, and uncovering their limitations.
As LLM-based tools become widespread, there is a clear need for
a comprehensive benchmarking suite that re!ects the diversity
and complexity of operational tasks encountered in real-world net-
works.

This poster outlines our vision for designing such a modular
benchmarking suite. We describe an approach for generating op-
erational tasks of varying complexity and discuss how to evaluate
LLMs on these tasks and assess system-level performance. As a pre-
liminary evaluation, we benchmark three LLMs—GPT-4.1, Gemini
2.5-Pro, and Claude 3.7 Sonnet— across over 100 test cases and two
pipeline variants.

CCS Concepts
• Networks→ Network management; • Computing method-
ologies→ Knowledge representation and reasoning; Arti!-
cial intelligence.
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1 Introduction
Network Incident Management (IM) is critical to ensuring reliability
in large-scale infrastructures, but diagnosing and repairing faults
remains complex, time-sensitive, and error-prone. Recent advances
in Large Language Models (LLMs) promise to assist operators by
interpreting inherently multimodal networking data [5]. However,
objectively reasoning about the performance of such systems on
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well-de!ned tasks of varying complexity remains a challenging
task in the inherently complex setting of Network IM.

Focusing on the case of miscon"gured networks disrupting their
intended behaviour, we pose the following Research Questions
(RQs) that capture the requirements of a benchmark in our task
context:

RQ1: How can we automatically generate realistic and complex
fault scenarios and quantify their impact on network behaviour?
Modeling disruption severity and resolution di#culty from mis-
con"gurations requires establishing nonlinear causal relationships.
Capturing this complexity is paramount for generating challenging
and meaningful test cases.

RQ2: (i) How should network state be encoded for LLM-based sys-
tems, and (ii) which solution pipelines are most e!ective? Various
approaches are being proposed, from the handling of raw network
data [4, 6] to the de"nition of structured work!ows integrating
specialized tools [3]. These strategies require evaluation under a
uni"ed and extensible testbed to ensure comparability and rele-
vance.

RQ3: How do we meaningfully assess an LLM’s proposed "x
against a "ground-truth", intended network behavior? Using data
to represent the network states, we need to distill metrics that
succinctly describe a remedy’s e#cacy.

This work identi"es key design considerations for automated
LLM-centered system evaluation in Network Incident Management.
We present a system that allows the continual incorporation of the
advancements related to these open research questions. We also
highlight the importance of extensibility when evaluating complex
work!ows that cannot be e$ectively addressed with a monolithic
Input → LLM→ Output design.

2 Proposed Framework and Design
Considerations

We propose a benchmarking pipeline composed of three subsequent
stages, eachmatching one of the research questions discussed above.
We showcase the pipeline in Fig. 1.

In the "rst stage, we generate representative network problems
(miscon"gurations). In the second stage, we generate prompts de-
scribing the problem and execute the LLM against them. Finally, in
the third stage, we evaluate the quality of the proposed solution (if
any). Our pipeline is fully modular, meaning that each stage can be
augmented and possibly even replaced independently. This enables
researchers to test complete LLM-centered systems and propose
evaluation strategies without refactoring the entire framework.
I. Problem Modeling We automatically create problematic net-
working scenarios as test cases. Each test case begins with a fault-
free ("clean") network con"guration, to which we inject faults to
simulate disruptions. Then, we rely on formal veri"cation methods
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