
What? How? Where?

Network Control Planes

Dagstuhl Seminar

Laurent Vanbever

Wed Apr 3 2019

nsg.ee.ethz.ch

Network Control Planes

What? How? Where?

computing forwarding state

collecting statistics

provisioning policies

maintaining topology information

#1

#2

#3

#4

specifying user intents

deriving compliant paths

failure detection, topology discovery, etc.

flow-level, router-level, network-level

Main tasks

Network Control Planes

What? How? Where?

computing forwarding state

collecting statistics

provisioning policies

maintaining topology information

#1

#2

#3

#4

specifying user intents

deriving compliant paths

failure detection, topology discovery, etc.

flow-level, router-level, network-level

Main tasks

Network Control Planes

What? How? Where?

centralized distributed

centralized distributed

provisioning

computing

topology

statistics

"Traditional" CPs

"Traditional" CPs

centralized distributed

provisioning

computing

topology

statistics

Openflow CPs

provisioning

computing

topology

statistics

centralized distributed

provisioning

statistics

"Hybrid" CPs

computing

topology

What? How? Where?

Network Control Planes

centralized distributed

centralized distributed

software

hardware

software

hardware

centralized distributed

software

hardware

provisioning

computing

topology

statistics

centralized distributed

Today's
networks

software

hardware

Today's
networks

Tomorrow's
networks?

provisioning

statistics
computing

topology

centralized distributed

What? How? Where?

Network Control Planes

software

hardware

Today's
networks

provisioning

statistics

centralized distributed

provisioning

computing

topology

statistics

Tomorrow's
networks

Part 1

What? How? Where?

Network Control Planes

How can we centrally provision the forwarding state

produced by distributed protocols?

How can we centrally provision the forwarding state

produced by distributed protocols?

Fibbing [SIGCOMM'15] NetComplete [NSDI'18]

software

hardware

Today's
networks

computing

topology

centralized distributed

provisioning

computing

topology

statistics

Tomorrow's
networks

Part 2

What? How? Where?

Network Control Planes

What parts of the CP should we offload (if any)

and how?

Blink [NSDI'19] HW-accelerated CPs [HotNets'18]

How can we centrally provision the forwarding state

produced by distributed protocols?

Fibbing [SIGCOMM'15] NetComplete [NSDI'18]

Goal Centrally control distributed routing protocols

where the computation of the forwarding state is distributed

Centrally control distributed routing protocols

where the computation of the forwarding state is distributed

Why? Designing central, scalable and robust control is hard

must ensure always-on connectivity to the controller

Distributed protocols are still ruling over networks

the vast majority of the networks rely on OSPF, BGP, MPLS, …

Goal

How can we control the network-wide forwarding state

produced by distributed protocols?

What are our knobs?

How can we control the network-wide forwarding state

produced by distributed protocols?

The network-wide forwarding state depends on

three parameters

Network-wide  
Forwarding state

Topology Network-wide
Configuration

Network
Environment

+ +
(fixed)

Network-wide  
Forwarding state

Network-wide  
Forwarding state

Network-wide
Configuration

Network
Environment

+ +

links & nodes status

routing announcements

Topology
(fixed)

(given)

Out of these three parameters,

two can be controlled

Network-wide  
Forwarding state

Network-wide
Configuration

Network
Environment

+ +
Topology

(fixed)

links & nodes status

routing announcements

Given a forwarding state we want to program,

we therefore have two ways to provision it

way 1

way 2

Given a network-wide forwarding state

the routing messages shown to the routers

the configurations run by the routers

to provision, one can synthesize

Given a network-wide forwarding state

the routing messages shown to the routers

the configurations run by the routers

to provision, one can synthesizeoutput

inputs

functions

Controlling distributed computation

through synthesis

Network-wide  
Forwarding state

Network-wide
Configuration

Network
Environment

+ +
Topology

(fixed)

Part 2 Part 1

Network-wide  
Forwarding state

Network-wide
Configuration

Network
Environment

+ +
Topology

(fixed)

Part 1

Controlling distributed computation

through synthesis

3

10

1

1

A B

C D

destinationsource

traffic flow

Consider this network where a source

sends traffic to 2 destinations

3

10

1

1

A B

C

desired

3

10

1

1

A B

C D

initial

D

As congestion appears, the operator wants

to shift away one flow from (C,D)

impossible to achieve by  
reweighing the links

desired

3

10

1

1

A B

C
3

10

1

1

A B

C D D

initial

Moving only one flow is impossible though

as both destinations are connected to D

3

1

1

A B

C

10

D

3

1

1

A B

C

10

D

Fibbing  
 controller

routing
session

Let’s lie to the routers

3

1

1

A B

C

10

D

Fibbing  
 controller

routing
session

Let’s lie to the routers, by injecting

fake nodes, links and destinations

3

1

1

A B

C

10

D

Fibbing  
 controller

A

C

Lie

15

11

3

1

1

A B

C

10

D

Fibbing  
 controller

A

C

A

C

Lies are propagated network-wide

by the routing protocol

Fibbing  
 controller

3

1

1

A B

C

10

D

15

1

1

All routers compute their shortest-paths

on the augmented topology

Fibbing  
 controller

3

1

1

A B

C

1

15

D

10
1

C prefers the virtual node (cost 2)

to reach the blue destination…

Fibbing  
 controller

3

1

1

A B

C

1

15

D

10
1

As the virtual node does not really exist,

actual traffic is physically sent to A

Synthesizing routing messages is powerful

Theorem Fibbing can program

any set of non-contradictory paths

Theorem Fibbing can program

any set of non-contradictory paths

Theorem

any path is loop-free

paths are consistent

(e.g. [s1, a, b, d] and

[s2, b, a, d] are inconsistent)

(e.g., [s1, a, b, a, d] is not possible)

Fibbing can program

any set of non-contradictory paths

Compute and minimize topologies in ms

independently of the size of the network

We developed efficient algorithms

polynomial in the # of requirements

We tested them against real routers

works on both Cisco and Juniper

Synthesizing routing messages is fast

and works in practice

Lots of lies are not required,

some of them are redundant

Good news

1

1 10

100

1

1

A B

C D E F

1

1 10

100

1

1

A B

C D E F

destination

A B

C D E F

source

1

1 10

100

1

1

A B

C D E F

1

1 10

100

1

1

original shortest-path

“down and to the right”

A B

C D E F

1001

1 10

1

1

desired shortest-path

“up and to the right”

A B

C D E F

1001

1 10

1

1

100
1

100
1

100

1

1001

100

1

Our naive algorithm would

create 5 lies—one per router

A B

C D E F

1001

1 10

1

1

100

1

A single lie is sufficient (and necessary)

A B

C D E F

1001

1 10

1

1

100
1

100
1

100

1

1001

100

1

Merger iteratively tries to merge lies

produced by the Naive algorithm

A B

C D E F

1001

1 10

1

1

100
1

100
1

100

1

1001

100

1

Merger iteratively tries to merge lies

produced by the Naive algorithm

A B

C D E F

1001

1 10

1

1

100
1

100

1

1001

100

1

Merger iteratively tries to merge lies

produced by the Naive algorithm

A B

C D E F

1001

1 10

1

1

100
1

100

1

1001

100

1

Merger iteratively tries to merge lies

produced by the Naive algorithm

A B

C D E F

1001

1 10

1

1

100

1

1001

100

1

Merger iteratively tries to merge lies

produced by the Naive algorithm

A B

C D E F

1001

1 10

1

1

100

1

1001

100

1

Merger iteratively tries to merge lies

produced by the Naive algorithm

A B

C D E F

1001

1 10

1

1

1001

100

1

Merger iteratively tries to merge lies

produced by the Naive algorithm

A B

C D E F

1001

1 10

1

1

100

1

Merger iteratively tries to merge lies

produced by the Naive algorithm

% of nodes changing next-hop

computation
time (s)

0 20 60 8040

0.001

0.1

10

% of nodes changing next-hop

% of nodes changing next-hop

computation
time (s)

0 20 40 60 80

% of nodes changing next−hop

tim
e

(s
ec

)

0.
00

1
0.

1
10

simple
merger (95−th)
merger (median)
merger (5−th)

0 20 60 8040

0.001

0.1

10

% of nodes changing next-hop

median

Fibbing computes routing messages to inject in ~1ms

median

% of nodes changing next-hop

computation
time (s)

0 20 40 60 80

% of nodes changing next−hop

tim
e

(s
ec

)

0.
00

1
0.

1
10

simple
merger (95−th)
merger (median)
merger (5−th)

0 20 60 8040

0.001

0.1

10

% of nodes changing next-hop

optimized (median)

Fibbing minimizes the # of routing messages

to inject in ~100ms

Fibbing is fully implemented

and works with real routers

1000

5 000

10 000

router
memory (MB)

0.7

76.0

153

50 000

100 000

6.8

14.5

nodes

DRAM is cheap

Existing routers can easily sustain

Fibbing-induced load, even with huge topologies

fake

Because it is entirely distributed,
programming forwarding entries is fast

1000

5 000

10 000

50 000

100 000

nodes
installation
time (s)

0.9

44.7

89.50

4.5

8.9

894.50 μs/entry

fake

Works with a single protocol family

Dijkstra-based shortest-path routing

Can lead to loads of messages

if the configuration is not adapted

Suffers from reliability issues

need to remove the lies upon failures

Fibbing is limited though, among others 
by the configurations running on the routers

Network-wide  
Forwarding state

Network-wide
Configuration

Network
Environment

+ +
Topology

(fixed)

Part 2

Controlling distributed computation

through synthesis

Ahmed El-Hassany Petar Tsankov Laurent Vanbever Martin Vechev

NetComplete: Practical Network-Wide

Configuration Synthesis with Autocompletion

Yes.  
The Internet seems to be better off during week-ends…

Yes.  
The Internet seems to be better off during week-ends…

This is a far too common story…

Why do we have so many misconfigurations?

Given

an existing network behavior

induced by a low-level configuration C

Given

an existing network behavior

induced by a low-level configuration C

and

a desired network behavior

Given

an existing network behavior

induced by a low-level configuration C

and

Adapt C so that the network follows the new behavior

a desired network behavior

Adapt C so that the network follows the new behavior

Given

an existing network behavior

induced by a low-level configuration C

and

a desired network behavior

!	
ip	multicast-routing	
!	
interface	Loopback0	
	ip	address	120.1.7.7	255.255.255.255	
	ip	ospf	1	area	0	
!	
!	
interface	Ethernet0/0	
	no	ip	address	
!	
interface	Ethernet0/0.17	
	encapsulation	dot1Q	17	
	ip	address	125.1.17.7	255.255.255.0	
	ip	pim	bsr-border	
	ip	pim	sparse-mode	
!	
!	
router	ospf	1	
	router-id	120.1.7.7	
	redistribute	bgp	700	subnets	
!	
…

…	
router	bgp	700	
	neighbor	125.1.17.1	remote-as	100	
	!	
	address-family	ipv4	
		redistribute	ospf	1	match	internal	
external	1	external	2	
		neighbor	125.1.17.1	activate	
	!	
	address-family	ipv4	multicast	
		network	125.1.79.0	mask	255.255.255.0	
		redistribute	ospf	1	match	internal	
external	1	external	2	
		neighbor	125.1.17.1	activate	
	!	

Cisco IOS

Nowadays these adaptations are still mostly done manually,

which is error-prone and time-consuming

!	
ip	multicast-routing	
!	
interface	Loopback0	
	ip	address	120.1.7.7	255.255.255.255	
	ip	ospf	1	area	0	
!	
!	
interface	Ethernet0/0	
	no	ip	address	
!	
interface	Ethernet0/0.17	
	encapsulation	dot1Q	17	
	ip	address	125.1.17.7	255.255.255.0	
	ip	pim	bsr-border	
	ip	pim	sparse-mode	
!	
!	
router	ospf	1	
	router-id	120.1.7.7	
	redistribute	bgp	700	subnets	
!	
…

…	
router	bgp	700	
	neighbor	125.1.17.1	remote-as	100	
	!	
	address-family	ipv4	
		redistribute	ospf	1	match	internal	
external	1	external	2	
		neighbor	125.1.17.1	activate	
	!	
	address-family	ipv4	multicast	
		network	125.1.79.0	mask	255.255.255.0	
		redistribute	ospf	1	match	internal	
external	1	external	2	
		neighbor	125.1.17.1	activate	
	!	

Cisco IOS

Nowadays these adaptations are still mostly done manually,

which is error-prone and time-consuming

Anything else than 700 creates blackholes	redistribute	bgp	700	subnets

Configuration synthesis addresses this problem by deriving 
low-level configurations from high-level requirements

!	
ip	multicast-routing	
!	
interface	Loopback0	
	ip	address	120.1.7.7	255.255.255.255	
	ip	ospf	1	area	0	
!	
!	
interface	Ethernet0/0	
	no	ip	address	
!	
interface	Ethernet0/0.17	
	encapsulation	dot1Q	17	
	ip	address	125.1.17.7	255.255.255.0	
	ip	pim	bsr-border	
	ip	pim	sparse-mode	
!	
!	

!	
ip	multicast-routing	
!	
interface	Loopback0	
	ip	address	120.1.7.7	255.255.255.255	
	ip	ospf	1	area	0	
!	
!	
interface	Ethernet0/0	
	no	ip	address	
!	
interface	Ethernet0/0.17	
	encapsulation	dot1Q	17	
	ip	address	125.1.17.7	255.255.255.0	
	ip	pim	bsr-border	
	ip	pim	sparse-mode	

router	ospf	1	
	router-id	120.1.7.7	
	redistribute	bgp	700	subnets	

Network model

Physical topology

High-level requirements

!	
!	
!	
!	
router	ospf	1	
	router-id	120.1.7.7	
	redistribute	bgp	700	subnets	
!	
router	bgp	700	
	neighbor	125.1.17.1	remote-as	100	
	!	
	address-family	ipv4	
		redistribute	ospf	1	match	internal	external	1	external	2	
		neighbor	125.1.17.1	activate	
	!	
	address-family	ipv4	multicast	
		network	125.1.79.0	mask	255.255.255.0	
		redistribute	ospf	1	match	internal	external	1	external	2	
		neighbor	125.1.17.1	activate	
	!	

Inputs Outputs

Synthesizer

Configuration synthesis addresses this problem by deriving 
low-level configurations from high-level requirements

given by the operator

Configuration synthesis:

a booming research area!

Propane [SIGCOMM’16]

PropaneAT [PLDI’17]

SyNET [CAV’17]

Genesis [POPL’17] forwarding rules

BGP configurations

OSPF + BGP configurations

Out of high-level requirements,

automatically derive…

Zeppelin [SIGMETRICS’18]

Synthesizing configuration is great, but comes with

challenges preventing a wide adoption

Existing synthesizers…

Problem #1 
interpretability

can produce configurations that  
widely differ from humanly-generated ones

Existing synthesizers…

Problem #1 
interpretability

can produce configurations that  
widely differ from humanly-generated ones

Problem #2

continuity

can produce widely different configurations 
given slightly different requirements

Existing synthesizers…

Problem #1 
interpretability

can produce configurations that  
widely differ from humanly-generated ones

Problem #2

continuity

can produce widely different configurations 
given slightly different requirements

Problem #3

deployability

cannot flexibly adapt to operational requirements,

requiring configuration heterogeneity

Existing synthesizers…

A key issue is that synthesizers do not provide operators

with a fine-grained control over the synthesized configurations

Introducing…

NetComplete

A configuration with “holes”

NetComplete allows network operators to flexibly express

their intents through configuration sketches

route-map	imp-p1	permit	10	
		?	

route-map	exp-p1	?	10	
		match	community	C2		
route-map	exp-p2	?	20		
		match	community	C1	
...

interface	TenGigabitEthernet1/1/1	
		ip	address	?	?	
		ip	ospf	cost	10	<	?	<	100	

router	ospf	100	
		?	
		...	

router	bgp	6500		
		...	

		neighbor	AS200	import	route-map	imp-p1	
		neighbor	AS200	export	route-map	exp-p1		
		...	

ip	community-list	C1	permit	?	
ip	community-list	C2	permit	?

interface	TenGigabitEthernet1/1/1	
		ip	address	?	?	
		ip	ospf	cost	10	<	?	<	100	

router	ospf	100	
		?	
		...	

router	bgp	6500		
		...	

		neighbor	AS200	import	route-map	imp-p1	
		neighbor	AS200	export	route-map	exp-p1		
		...	

ip	community-list	C1	permit	?	
ip	community-list	C2	permit	?

Holes can identify

specific attributes such as:

IP addresses

link costs

BGP local preferences

interface	TenGigabitEthernet1/1/1	
		ip	address	?	?	
		ip	ospf	cost	10	<	?	<	100	

router	bgp	6500		
		...	

		neighbor	AS200	import	route-map	imp-p1	
		neighbor	AS200	export	route-map	exp-p1		
		...	

ip	community-list	C1	permit	?	
ip	community-list	C2	permit	?

route-map	exp-p1	?	10	
		match	community	C2		
route-map	exp-p2	?	20		
		match	community	C1	
...

router	ospf	100	
		?	
		...	

route-map	imp-p1	permit	10	
		?	

Holes can also identify

entire pieces of the configuration

NetComplete “autocompletes” the holes such that

the output configuration complies with the requirements

route-map	imp-p1	permit	10	
		?	

route-map	exp-p1	?	10	
		match	community	C2		
route-map	exp-p2	?	20		
		match	community	C1	
...

interface	TenGigabitEthernet1/1/1	
		ip	address	?	?	
		ip	ospf	cost	10	<	?	<	100	

router	ospf	100	
		?	
		...	

router	bgp	6500		
		...	

		neighbor	AS200	import	route-map	imp-p1	
		neighbor	AS200	export	route-map	exp-p1		
		...	

ip	community-list	C1	permit	?	
ip	community-list	C2	permit	?

route-map	imp-p1	permit	10	
		set	community	6500:1	
		set	local-pref	50	
route-map	exp-p1	permit	10	
		match	community	C2		
route-map	exp-p2	deny	20		
		match	community	C1	
...

interface	TenGigabitEthernet1/1/1	
		ip	address	10.0.0.1	255.255.255.254	
		ip	ospf	cost	15	

router	ospf	100	
		network	10.0.0.1	0.0.0.1	area	0.0.0.0	
			

router	bgp	6500		
		...	

		neighbor	AS200	import	route-map	imp-p1	
		neighbor	AS200	export	route-map	exp-p1		
		...	

ip	community-list	C1	permit	6500:1	
ip	community-list	C2	permit	6500:2

NetComplete reduces the autocompletion problem

to a constraint satisfaction problem

Encode the as a logical formula (in SMT)

protocol semantics

high-level requirements

partial configurations

First

Use a solver (Z3) to find an assignment for the undefined

configuration variables s.t. the formula evaluates to True

Then

Encode the as a logical formula (in SMT)

protocol semantics

high-level requirements

partial configurations

First

Links/adjacencies/

static routes synthesis

BGP synthesis

OSPF synthesis

NetComplete

Topology

Reqs

?

?

Inputs

network-wide
configurations

Outputs

Sketch

Z3 solver

Links/adjacencies/

static routes synthesis

BGP synthesis

OSPF synthesis

NetComplete

Topology

Reqs

?

?

Inputs

network-wide
configurations

Outputs

Sketch

Z3 solver

φSTATIC

φBGP + φSTATIC

φOSPF + φBGP + φSTATIC

Main challenge:

Scalability

network-specific

heuristics

Insight #1 Insight #2

partial evaluation

search space navigation search space reduction

optimized encoding
BGP synthesis1

OSPF synthesis
counter-examples-based

2

Evaluation
flexible, yet scalable

3

NetComplete: Practical Network-Wide

Configuration Synthesis with Autocompletion

?

?

!39

But first…

"How to configure routing protocols" 101

inter-domain

routing

intra-domain

routing

BGP OSPF

!40

But first…

"How to configure routing protocols" 101

inter-domain

routing

intra-domain

routing

BGP

Internet

Internet

Internet

A network of networks

Internet

Border Gateway Protocol (BGP)

The Internet is a network of networks,

referred to as Autonomous Systems (AS)

AS50

AS20

AS10

AS30

AS40

BGP is the routing protocol

"glueing" the Internet together

BGP sessions

129.132.0.0/16  
ETH/UNIZH Camp Net

Using BGP, ASes exchange information about

the IP prefixes they can reach, directly or indirectly

129.132.0.0/16  
ETH/UNIZH Camp Net

 129.132.0.0/16

 Path: 40

 129.132.0.0/16

 Path: 40

BGP routes carry complete path information

instead of distance

AS50

AS20

AS10

AS30

AS40

129.132.0.0/16  
ETH/UNIZH Camp Net

 129.132.0.0/16

 Path: 10 40

Each AS appends itself to the path

when it propagates announcements

AS50

AS20

AS10

AS30

AS40

129.132.0.0/16  
ETH/UNIZH Camp Net

 129.132.0.0/16

 Path: 50 10 40

 129.132.0.0/16

 Path: 10 40

AS50

AS20

AS10

AS30

AS40

Network operators need to configure each router

to adapt how it selects and exports BGP advertisements

Network operators need to configure each router

to adapt how it selects and exports BGP advertisements

Selection

along which one should it direct traffic?

out of all paths a router receives:

Selection

along which one should it direct traffic?

out of all paths a router receives:

control where traffic is going

Network operators need to configure each router

to adapt how it selects and exports BGP advertisements

ExportSelection

along which one should it direct traffic?

out of all paths a router receives: for each selected path:

to which neighbors propagate it?

control where traffic is going

Network operators need to configure each router

to adapt how it selects and exports BGP advertisements

ExportSelection

along which one should it direct traffic?

out of all paths a router receives: for each selected path:

to which neighbors propagate it?

control where traffic is going control where traffic is coming from

Network operators need to configure each router

to adapt how it selects and exports BGP advertisements

All
acceptable

routes

BGP Decision Process

Input filters

Attribute
Manipulation

Input filters

Attribute
Manipulation

Input filters

Attribute
Manipulation

...

Neighbor1

Neighbor2

Neighborn

Output filters

Output filters

Attribute
Manipulation

Output filters

Attribute
Manipulation

...

Neighbor1

Neighbor2

NeighbornBest route
to each

destination

Adj-RIB-In Adj-RIB-Out

Attribute
Manipulation

BGP sessions BGP sessions

Loc-Rib

IP forwarding table

forwarding entries

IP packets IP packets

All
acceptable

routes

BGP Decision Process

Input filters

Attribute
Manipulation

Input filters

Attribute
Manipulation

Input filters

Attribute
Manipulation

...

Neighbor1

Neighbor2

Neighborn

Output filters

Output filters

Attribute
Manipulation

Output filters

Attribute
Manipulation

...

Neighbor1

Neighbor2

NeighbornBest route
to each

destination

Adj-RIB-In Adj-RIB-Out

Attribute
Manipulation

BGP sessions BGP sessions

Loc-Rib

IP forwarding table

forwarding entries

IP packets IP packets

All
acceptable

routes

BGP Decision Process

Input filters

Attribute
Manipulation

Input filters

Attribute
Manipulation

Input filters

Attribute
Manipulation

...

Neighbor1

Neighbor2

Neighborn

Output filters

Output filters

Attribute
Manipulation

Output filters

Attribute
Manipulation

...

Neighbor1

Neighbor2

NeighbornBest route
to each

destination

Adj-RIB-In Adj-RIB-Out

Attribute
Manipulation

BGP sessions BGP sessions

Loc-Rib

fixed, well-known

Prefer routes…

with higher preference

with shorter path length

…

learned externally rather than internally

whose egress point is the closest

with smaller egress IP address (tie-break)

All
acceptable

routes

BGP Decision Process

Input filters

Attribute
Manipulation

Input filters

Attribute
Manipulation

Input filters

Attribute
Manipulation

...

Neighbor1

Neighbor2

Neighborn

Output filters

Output filters

Attribute
Manipulation

Output filters

Attribute
Manipulation

...

Neighbor1

Neighbor2

NeighbornBest route
to each

destination

Adj-RIB-In Adj-RIB-Out

Attribute
Manipulation

BGP sessions BGP sessions

Loc-Rib

IP forwarding table

forwarding entries

IP packets IP packets

All
acceptable

routes

BGP Decision Process

Input filters

Attribute
Manipulation

Input filters

Attribute
Manipulation

Input filters

Attribute
Manipulation

...

Neighbor1

Neighbor2

Neighborn

Output filters

Output filters

Attribute
Manipulation

Output filters

Attribute
Manipulation

...

Neighbor1

Neighbor2

NeighbornBest route
to each

destination

Adj-RIB-In Adj-RIB-Out

Attribute
Manipulation

BGP sessions BGP sessions

Loc-Rib

All
acceptable

routes

BGP Decision Process

Input filters

Attribute
Manipulation

Input filters

Attribute
Manipulation

Input filters

Attribute
Manipulation

...

Neighbor1

Neighbor2

Neighborn

Output filters

Output filters

Attribute
Manipulation

Output filters

Attribute
Manipulation

...

Neighbor1

Neighbor2

NeighbornBest route
to each

destination

Adj-RIB-In Adj-RIB-Out

Attribute
Manipulation

BGP sessions BGP sessions

Loc-Rib

commonly known as BGP policies

Network operators adapt how a router selects and exports

BGP advertisements by configuring inbound/outbound filters

Network operators adapt how a router selects and exports

BGP advertisements by configuring inbound/outbound filters

BGP filter

f : Adv ! (Adv [?)
<latexit sha1_base64="CtPHCLsPnDQ3fTskvQdwW/iOUBc=">AAACC3icdVDLSgMxFM3UV62vUZdugkWomzJTBMVV1Y3LCvYBbSmZTKYNzUyG5E6lDN278VfcuFDErT/gzr8x01bweeByD+fcS3KPFwuuwXHerdzC4tLySn61sLa+sbllb+80tEwUZXUqhVQtj2gmeMTqwEGwVqwYCT3Bmt7wIvObI6Y0l9E1jGPWDUk/4gGnBIzUs/eDU3zmj3BH8f4AiFLyBpemAk1i3PEkHPbsolOuOBnwb+KWp90pojlqPfut40uahCwCKojWbdeJoZsSBZwKNil0Es1iQoekz9qGRiRkuptOb5ngA6P4OJDKVAR4qn7dSEmo9Tj0zGRIYKB/epn4l9dOIDjppjyKE2ARnT0UJAKDxFkw2OeKURBjQwhV3PwV0wFRhIKJr2BC+LwU/08albLrlN2ro2L1fB5HHu2hfVRCLjpGVXSJaqiOKLpF9+gRPVl31oP1bL3MRnPWfGcXfYP1+gHxrJm2</latexit><latexit sha1_base64="CtPHCLsPnDQ3fTskvQdwW/iOUBc=">AAACC3icdVDLSgMxFM3UV62vUZdugkWomzJTBMVV1Y3LCvYBbSmZTKYNzUyG5E6lDN278VfcuFDErT/gzr8x01bweeByD+fcS3KPFwuuwXHerdzC4tLySn61sLa+sbllb+80tEwUZXUqhVQtj2gmeMTqwEGwVqwYCT3Bmt7wIvObI6Y0l9E1jGPWDUk/4gGnBIzUs/eDU3zmj3BH8f4AiFLyBpemAk1i3PEkHPbsolOuOBnwb+KWp90pojlqPfut40uahCwCKojWbdeJoZsSBZwKNil0Es1iQoekz9qGRiRkuptOb5ngA6P4OJDKVAR4qn7dSEmo9Tj0zGRIYKB/epn4l9dOIDjppjyKE2ARnT0UJAKDxFkw2OeKURBjQwhV3PwV0wFRhIKJr2BC+LwU/08albLrlN2ro2L1fB5HHu2hfVRCLjpGVXSJaqiOKLpF9+gRPVl31oP1bL3MRnPWfGcXfYP1+gHxrJm2</latexit><latexit sha1_base64="CtPHCLsPnDQ3fTskvQdwW/iOUBc=">AAACC3icdVDLSgMxFM3UV62vUZdugkWomzJTBMVV1Y3LCvYBbSmZTKYNzUyG5E6lDN278VfcuFDErT/gzr8x01bweeByD+fcS3KPFwuuwXHerdzC4tLySn61sLa+sbllb+80tEwUZXUqhVQtj2gmeMTqwEGwVqwYCT3Bmt7wIvObI6Y0l9E1jGPWDUk/4gGnBIzUs/eDU3zmj3BH8f4AiFLyBpemAk1i3PEkHPbsolOuOBnwb+KWp90pojlqPfut40uahCwCKojWbdeJoZsSBZwKNil0Es1iQoekz9qGRiRkuptOb5ngA6P4OJDKVAR4qn7dSEmo9Tj0zGRIYKB/epn4l9dOIDjppjyKE2ARnT0UJAKDxFkw2OeKURBjQwhV3PwV0wFRhIKJr2BC+LwU/08albLrlN2ro2L1fB5HHu2hfVRCLjpGVXSJaqiOKLpF9+gRPVl31oP1bL3MRnPWfGcXfYP1+gHxrJm2</latexit><latexit sha1_base64="CtPHCLsPnDQ3fTskvQdwW/iOUBc=">AAACC3icdVDLSgMxFM3UV62vUZdugkWomzJTBMVV1Y3LCvYBbSmZTKYNzUyG5E6lDN278VfcuFDErT/gzr8x01bweeByD+fcS3KPFwuuwXHerdzC4tLySn61sLa+sbllb+80tEwUZXUqhVQtj2gmeMTqwEGwVqwYCT3Bmt7wIvObI6Y0l9E1jGPWDUk/4gGnBIzUs/eDU3zmj3BH8f4AiFLyBpemAk1i3PEkHPbsolOuOBnwb+KWp90pojlqPfut40uahCwCKojWbdeJoZsSBZwKNil0Es1iQoekz9qGRiRkuptOb5ngA6P4OJDKVAR4qn7dSEmo9Tj0zGRIYKB/epn4l9dOIDjppjyKE2ARnT0UJAKDxFkw2OeKURBjQwhV3PwV0wFRhIKJr2BC+LwU/08albLrlN2ro2L1fB5HHu2hfVRCLjpGVXSJaqiOKLpF9+gRPVl31oP1bL3MRnPWfGcXfYP1+gHxrJm2</latexit>

Network operators adapt how a router selects and exports

BGP advertisements by configuring inbound/outbound filters

predicate

action

prefix from Google

path matches a regular expression

set preference X

drop

attach/strip label Y

label contains X

BGP filter

path received from AS X

…

…

f : Adv ! (Adv [?)
<latexit sha1_base64="CtPHCLsPnDQ3fTskvQdwW/iOUBc=">AAACC3icdVDLSgMxFM3UV62vUZdugkWomzJTBMVV1Y3LCvYBbSmZTKYNzUyG5E6lDN278VfcuFDErT/gzr8x01bweeByD+fcS3KPFwuuwXHerdzC4tLySn61sLa+sbllb+80tEwUZXUqhVQtj2gmeMTqwEGwVqwYCT3Bmt7wIvObI6Y0l9E1jGPWDUk/4gGnBIzUs/eDU3zmj3BH8f4AiFLyBpemAk1i3PEkHPbsolOuOBnwb+KWp90pojlqPfut40uahCwCKojWbdeJoZsSBZwKNil0Es1iQoekz9qGRiRkuptOb5ngA6P4OJDKVAR4qn7dSEmo9Tj0zGRIYKB/epn4l9dOIDjppjyKE2ARnT0UJAKDxFkw2OeKURBjQwhV3PwV0wFRhIKJr2BC+LwU/08albLrlN2ro2L1fB5HHu2hfVRCLjpGVXSJaqiOKLpF9+gRPVl31oP1bL3MRnPWfGcXfYP1+gHxrJm2</latexit><latexit sha1_base64="CtPHCLsPnDQ3fTskvQdwW/iOUBc=">AAACC3icdVDLSgMxFM3UV62vUZdugkWomzJTBMVV1Y3LCvYBbSmZTKYNzUyG5E6lDN278VfcuFDErT/gzr8x01bweeByD+fcS3KPFwuuwXHerdzC4tLySn61sLa+sbllb+80tEwUZXUqhVQtj2gmeMTqwEGwVqwYCT3Bmt7wIvObI6Y0l9E1jGPWDUk/4gGnBIzUs/eDU3zmj3BH8f4AiFLyBpemAk1i3PEkHPbsolOuOBnwb+KWp90pojlqPfut40uahCwCKojWbdeJoZsSBZwKNil0Es1iQoekz9qGRiRkuptOb5ngA6P4OJDKVAR4qn7dSEmo9Tj0zGRIYKB/epn4l9dOIDjppjyKE2ARnT0UJAKDxFkw2OeKURBjQwhV3PwV0wFRhIKJr2BC+LwU/08albLrlN2ro2L1fB5HHu2hfVRCLjpGVXSJaqiOKLpF9+gRPVl31oP1bL3MRnPWfGcXfYP1+gHxrJm2</latexit><latexit sha1_base64="CtPHCLsPnDQ3fTskvQdwW/iOUBc=">AAACC3icdVDLSgMxFM3UV62vUZdugkWomzJTBMVV1Y3LCvYBbSmZTKYNzUyG5E6lDN278VfcuFDErT/gzr8x01bweeByD+fcS3KPFwuuwXHerdzC4tLySn61sLa+sbllb+80tEwUZXUqhVQtj2gmeMTqwEGwVqwYCT3Bmt7wIvObI6Y0l9E1jGPWDUk/4gGnBIzUs/eDU3zmj3BH8f4AiFLyBpemAk1i3PEkHPbsolOuOBnwb+KWp90pojlqPfut40uahCwCKojWbdeJoZsSBZwKNil0Es1iQoekz9qGRiRkuptOb5ngA6P4OJDKVAR4qn7dSEmo9Tj0zGRIYKB/epn4l9dOIDjppjyKE2ARnT0UJAKDxFkw2OeKURBjQwhV3PwV0wFRhIKJr2BC+LwU/08albLrlN2ro2L1fB5HHu2hfVRCLjpGVXSJaqiOKLpF9+gRPVl31oP1bL3MRnPWfGcXfYP1+gHxrJm2</latexit><latexit sha1_base64="CtPHCLsPnDQ3fTskvQdwW/iOUBc=">AAACC3icdVDLSgMxFM3UV62vUZdugkWomzJTBMVV1Y3LCvYBbSmZTKYNzUyG5E6lDN278VfcuFDErT/gzr8x01bweeByD+fcS3KPFwuuwXHerdzC4tLySn61sLa+sbllb+80tEwUZXUqhVQtj2gmeMTqwEGwVqwYCT3Bmt7wIvObI6Y0l9E1jGPWDUk/4gGnBIzUs/eDU3zmj3BH8f4AiFLyBpemAk1i3PEkHPbsolOuOBnwb+KWp90pojlqPfut40uahCwCKojWbdeJoZsSBZwKNil0Es1iQoekz9qGRiRkuptOb5ngA6P4OJDKVAR4qn7dSEmo9Tj0zGRIYKB/epn4l9dOIDjppjyKE2ARnT0UJAKDxFkw2OeKURBjQwhV3PwV0wFRhIKJr2BC+LwU/08albLrlN2ro2L1fB5HHu2hfVRCLjpGVXSJaqiOKLpF9+gRPVl31oP1bL3MRnPWfGcXfYP1+gHxrJm2</latexit>

Provider #2 ($)
Provider #1 ($$)

AS50

AS30

AS40

AS50

AS30

AS40

primary path

for Google traffic
secondary path

AS50

AS30

AS40

Edge #BEdge #A

router	bgp	10		
		...	

		neighbor	AS50	in_filter	in_dt	
		neighbor	AS50	out_filter	out_dt	
		...	

route-map	in_dt	
		set	preference	100	
 

Edge #B configuration

Edge #B

router	bgp	10		
		...	

		neighbor	AS30	in_filter	in_swiss	
		neighbor	AS30	out_filter	out_swiss	
		...	

route-map	in_swiss	
		set	preference	50	
	 

Edge #A configuration

Edge #A

AS50

AS30

AS40

Swisscom shouldn't reach

DT via ETH (and vice-versa)

router	bgp	10		
		...	

		neighbor	AS50	in_filter	in_dt	
		neighbor	AS50	out_filter	out_dt	
		...	

route-map	in_dt	
		set	preference	100	
		set	label	PROVIDER 
		...	
route-map	out_dt	
		if(label	PROVIDER):	drop;	
		else	allow;

Edge #B configuration

Edge #B

router	bgp	10		
		...	

		neighbor	AS30	in_filter	in_swiss	
		neighbor	AS30	out_filter	out_swiss	
		...	

route-map	in_swiss	
		set	preference	50	
		set	label	PROVIDER 
		...	
route-map	out_swiss	
		if(label	PROVIDER):	drop;	
		else	allow;

Edge #A configuration

Edge #A

!71

But first…

"How to configure routing protocols" 101

inter-domain

routing

intra-domain

routing

OSPF

In OSPF, routers build a precise map of the network

by flooding its local view to everyone

Each router keeps track of its incident links and cost

to compute their shortest-paths and forwarding tables

Each router broadcasts its own link state

Routers run Dijkstra on the corresponding graph

as well as whether they are up or down

to give every router a complete view of the graph

OSPF configuration mainly consists in figuring out link weights

inducing an intended network-wide forwarding state

intended forwarding state

intended forwarding state OSPF configuration

150 150
300

200

150
150

optimized encoding
BGP synthesis1

OSPF synthesis
counter-examples-based

2

Evaluation
flexible, yet scalable

3

NetComplete: Practical Network-Wide

Configuration Synthesis with Autocompletion

?

?

optimized encoding
BGP synthesis1

OSPF synthesis
counter-examples-based

Evaluation
flexible, yet scalable

NetComplete: Practical Network-Wide

Configuration Synthesis with Autocompletion

?

?

NetComplete autocompletes router-level BGP policies by

encoding the desired BGP behavior as a logical formula

M	⊨	Reqs	∧	BGPprotocol ∧	Policies

M	⊨	Reqs	∧	BGPprotocol ∧	Policies

how should the network forward traffic

concrete, part of the input

M	⊨	Reqs	∧	BGPprotocol ∧	Policies

R1.BGPselect(A1,A2) ∧

R1.BGPselect(A2,A3) ∧ …

M	⊨	Reqs	∧	BGPprotocol ∧	Policies

how do BGP routers select routes

concrete, protocol semantic

M	⊨	Reqs	∧	BGPprotocol ∧	Policies

BGPselect(X,Y)	⇔	(X.LocalPref	>	Y.LocalPref)	∨	…

how routes should be modified

symbolic, to be found

M	⊨	Reqs	∧	BGPprotocol ∧	Policies

M	⊨	Reqs	∧	BGPprotocol ∧	Policies

R1.SetLocalPref(A1) = VarX

R1.SetLocalPref(A2) = 200

M	⊨	Reqs	∧	BGPprotocol ∧	Policies

R1.SetLocalPref(A1) = VarX

R1.SetLocalPref(A2) = 200

R1.BGPselect(A1,A2) ∧

R1.BGPselect(A2,A3) ∧ …

BGPselect(X,Y)	⇔	(X.LocalPref	>	Y.LocalPref)	∨	…

Solving this logical formula consists in assigning

each symbolic variable with a concrete value

M	⊨	Reqs	∧	BGPprotocol ∧	Policies

R1.SetLocalPref(A1) = VarX

R1.SetLocalPref(A2) = 200

R1.BGPselect(A1,A2) ∧

R1.BGPselect(A2,A3) ∧ …

BGPselect(X,Y)	⇔	(X.LocalPref	>	Y.LocalPref)	∨	…

VarX := 250 M	⊨	Reqs	∧	BGPprotocol ∧	Policies

R1.SetLocalPref(A1) = VarX

R1.SetLocalPref(A2) = 200

R1.BGPselect(A1,A2) ∧

R1.BGPselect(A2,A3) ∧ …

BGPselect(X,Y)	⇔	(X.LocalPref	>	Y.LocalPref)	∨	…

Naive encodings lead to complex constraints

that cannot be solved in a reasonable time

Naive encodings lead to complex constraints

that cannot be solved in a reasonable time

M	⊨	Reqs	∧	BGPprotocol ∧	Policies

BGP x OSPF huge search spacechallenges

Naive encodings lead to complex constraints

that cannot be solved in a reasonable time

M	⊨	Reqs	∧	BGPprotocol ∧	Policies

BGP x OSPF huge search space

partial evaluationiterative synthesis

challenges

solutions

Naive encodings lead to complex constraints

that cannot be solved in a reasonable time

M	⊨	Reqs	∧	BGPprotocol ∧	Policies

BGP x OSPF huge search space

partial evaluationiterative synthesis

challenges

solutions

NetComplete encodes reduced policies by relying

on the requirements and the sketches

Capture how announcements should propagate

using the requirements

Step 1

Output BGP propagation graph

NetComplete encodes reduced policies by relying

on the requirements and the sketches

Capture how announcements should propagate

Combine the graph with constraints imposed by sketches

using the requirements

via symbolic execution

Step 1

Step 2

Output BGP propagation graph

Output partially evaluated formulas

NetComplete encodes reduced policies by relying

on the requirements and the sketches

NetComplete relies on the requirements to figure out

where BGP announcements should (not) propagate

Requirement

Only customers should be able to

send traffic to Provider #2

Provider 2Provider 1

Provider 3

Customer

NetComplete relies on the requirements to figure out

where BGP announcements should (not) propagate

Requirement

Only customers should be able to

send traffic to Provider #2

Provider 2Provider 1

Provider 3

Customer

NetComplete relies on the requirements to figure out

where BGP announcements should (not) propagate

B C

A D

P1 P2

P3

Cust

blocked

blocked

NetComplete computes one BGP propagation graph

per equivalence class

Provider 2Provider 1

Provider 3

Customer

B C

A D

P1 P2

P3

Cust

Encode BGP policies  
as SMT formulas

Result is a partially
evaluated formula

permitted	=	True	
local_pref	=	?	
communities	=	?	
…

Inject symbolic
announcement

For	all	ann	in	Announcements:	
	ann.communities	=	[External,	Var1]	
	ann.local_pref	=	100

permitted	=	True	
local_pref	=	100	
communities	=	[External,	Var1]	
…

NetComplete concretizes symbolic announcements

by propagating them through the graph and sketches

Naive encodings lead to complex constraints

that cannot be solved in a reasonable time

M	⊨	Reqs	∧	BGPprotocol ∧	Policies

BGP x OSPF huge search space

partial evaluationiterative synthesis

challenges

solutions

M	⊨	Reqs	∧	BGPprotocol ∧	Policies

BGP Decision Process

1

2

3

4

5

6

Higher local preference

Shorter AS Path

Lowest Origin

Lowest MED

eBGP over iBGP

Lower OSPF weight

BGP Decision Process

1

2

3

4

5

6 If we hit this step,
it means that the BGP decision depends on OSPF

Higher local preference

Shorter AS Path

Lowest Origin

Lowest MED

eBGP over iBGP

Lower OSPF weight

NetComplete first tries to find a BGP-only assignment,

one in which the BGP behavior does not depend on OSPF

Higher local preference

PrefNoOSPF(X,Y)

1

2

3

Shorter AS Path

Lowest Origin

Lowest MED

eBGP over iBGP

Lower OSPF weight

4

5

6 PrefOSPF(X,Y)⇔¬PrefNoOSPF(X,Y)

Decision Process Constraints

NetComplete first searches for a solution using solely Step 1 to 5

M	⊨	Reqs	∧	BGPprotocol	∧	Policies

BGPselect(X,Y)⇔PrefNoOSPF(X,Y)

NetComplete first searches for a solution using solely Step 1 to 5

M	⊨	Reqs	∧	BGPprotocol	∧	Policies

UNSAT! BGPselect(X,Y)⇔PrefNoOSPF(X,Y)

BGPselect(X,Y)⇔PrefNoOSPF(X,Y)

M	⊨	Reqs	∧	BGPprotocol	∧	Policies

UNSAT!

If NetComplete cannot find an assignment,

it then allows the BGP decisions to depend on OSPF

BGPselect(X,Y)⇔PrefNoOSPF(X,Y)

M	⊨	Reqs	∧	BGPprotocol	∧	Policies

BGPselect(X,Y)⇔PrefNoOSPF(X,Y)

M	⊨	Reqs	∧	BGPprotocol	∧	Policies

BGPselect(X,Y)⇔PrefOSPF(X,Y) generate OSPF-based constraints

optimized encoding
BGP synthesis

OSPF synthesis
counter-examples-based

2

Evaluation
flexible, yet scalable

NetComplete: Practical Network-Wide

Configuration Synthesis with Autocompletion

?

?

As for BGP, Netcomplete phrases the problem of finding weights

as a constraint satisfaction problem

A D

CB

Consider this initial configuration in which

(A,C) traffic is forwarded along the direct link

150

1

10

10

150
1

For performance reasons,

the operators want to enable load-balancing

A D

CB

What should be the weights for this to happen?

A D

CB

input requirements

DA

B C

input requirements synthesis procedure

DA

B C

∀X ∈ Paths(A,C)\Reqs

input requirements

Cost(A→C) = Cost(A→D→C) < Cost(X)

synthesis procedure

DA

B C

∀X ∈ Paths(A,C)\Reqs

Cost(A→C) = Cost(A→D→C) < Cost(X)

Solve

synthesis procedureinput requirements

DA

B C

∀X ∈ Paths(A,C)\Reqs

Cost(A→C) = Cost(A→D→C) < Cost(X)

Solve

synthesis procedureinput requirements

DA

B C

∀X ∈ Paths(A,C)\Reqs

input requirements

150 150
300

200

Cost(A→C) = Cost(A→D→C) < Cost(X)

Solve

synthesis procedure

150

Synthesized weights

DA

B C

150

This was easy, but…

it does not scale

∀X ∈ Paths(A,C)\Reqs

Cost(A→C) = Cost(A→D→C) < Cost(X)

Solve

Cost(A→C) = Cost(A→D→C) < Cost(X)

Solve

∀X ∈ Paths(A,C)\Reqs

There can be an exponential number of paths
between A and C…

An contemporary approach to synthesis where

a solution is iteratively learned from counter-examples

To scale, NetComplete leverages

Counter-Example Guided Inductive Synthesis (CEGIS)

While enumerating all paths is hard,

computing shortest paths given weights is easy!

Instead of considering all paths between X and Y

Consider a random subset S of them and

synthesize the weights considering S only

Instead of considering all paths between X and Y

Part 1

CEGIS

Consider a random subset S of them and

synthesize the weights considering S only

Instead of considering all paths between X and Y

Part 1

CEGIS

Fast as S is small compared to all paths

but can be wrong

intuition

Consider a random subset S of them and

synthesize the weights considering S only

Instead of considering all paths between X and Y

Part 1

CEGIS

Fast as S is small compared to all paths

but can be wrong

intuition

Check whether the weights found comply  
with the requirements over all paths

Else take a counter-example (a path)  
that violates the Req and add it to S

If so return

Repeat.

Consider a random subset S of them and

synthesize the weights considering S only

CEGIS

Part 2

Instead of considering all paths between X and Y

Part 1

CEGIS

Check whether the weights found comply  
with the requirements over all paths

Consider a random subset S of them and

synthesize the weights considering S only

CEGIS

Part 2

Instead of considering all paths between X and Y

Part 1

CEGIS

Fast too

simple shortest-path computation

intuition

D

input requirements

A

B C

input requirements synthesis procedure

DA

B C

∀X ∈ SamplePaths(A,C)\Reqs

input requirements synthesis procedure

DA

B C

∀X ∈ SamplePaths(A,C)\Reqs

input requirements synthesis procedure

Sample: { [A,B,D,C] }

DA

B C

∀X ∈ SamplePaths(A,C)\Reqs

input requirements

Cost(A→C) = Cost(A→D→C) < Cost(X)

synthesis procedure

DA

B C

∀X ∈ SamplePaths(A,C)\Reqs

Cost(A→C) = Cost(A→D→C) < Cost(X)

Solve

synthesis procedureinput requirements

DA

B C

∀X ∈ SamplePaths(A,C)\Reqs

Cost(A→C) = Cost(A→D→C) < Cost(X)

Solve

synthesis procedureinput requirements

DA

B C

∀X ∈ SamplePaths(A,C)\Reqs

input requirements

150 150
300

100

Cost(A→C) = Cost(A→D→C) < Cost(X)

Solve

synthesis procedure

150

Synthesized weights

DA

B C

300

∀X ∈ SamplePaths(A,C)\Reqs

150 150
300

100

Cost(A→C) = Cost(A→D→C) < Cost(X)

Solve

150

DA

B C

300

The synthesized weights are incorrect:

cost(A → B → C]) = 250 < cost(A → C) = 300

actual path

∀X ∈ SamplePaths(A,C)\Reqs

Sample: { [A,B,D,C] } U { [A,B,C] }

DA

B C

We simply add the counter example to  
SamplePaths and repeat the procedure

The entire procedure usually converges in few iterations

making it very fast in practice

optimized encoding
BGP synthesis

OSPF synthesis
counter-examples-based

Evaluation
flexible, yet scalable

3

NetComplete: Practical Network-Wide

Configuration Synthesis with Autocompletion

?

?

Can NetComplete synthesize large-scale configurations?

How does the concreteness of the sketch influence the running time?

Question #1

Question #2

Code ~10K lines of Python

SMT-LIB v2 and Z3

Input OSPF, BGP, static routes

Output Cisco-compatible configurations

as partial and concrete configs

validated with actual Cisco routers

We fully implemented NetComplete

and showed its practicality

Methodology

15 topologies from Topology Zoo

small, medium, and large

Simple, Any, ECMP, and ordered (random)

Built from a fully concrete configuration

using OSPF/BGP

from which we made a % of the variables symbolic

Topology

Requirement

Sketch

NetComplete synthesizes configurations

for large networks in few minutes

Network  
size

Reqs.

type

Synthesis

time

OSPF synthesis
time (sec)

NetComplete synthesizes configurations

for large networks in few minutes

16 reqs, 50% symbolic, 5 repet.

CEGIS enabled

settings

Large Simple

ECMP

Ordered

14s

13s

249s

~150 nodes

Without CEGIS, OSPF synthesis is

>100x slower and often timeouts

0 20 40 60 80 100

Percentage of symbolic edge costs

0

500

1000

1500

2000

T
im

e
[s

]

% of nodes changing next-hop
0 20 60 10040

% of weights left symbolic in the sketch
60

0

0.1

2000

1000

1500

OSPF synthesis
time (sec)

NetComplete synthesis time increases

as the sketch becomes more symbolic

16 reqs

large topos.

settings

0 20 40 60 80 100

Percentage of symbolic edge costs

0

500

1000

1500

2000

T
im

e
[s

]

% of nodes changing next-hop
0 20 60 10040 60

0

0.1

2000

1000

1500

NetComplete synthesis time increases

as the sketch becomes more symbolic

% of weights left symbolic in the sketch

OSPF synthesis
time (sec)

16 reqs

large topos.

settings

optimized encoding
BGP synthesis

OSPF synthesis
counter-examples-based

Evaluation
flexible, yet scalable

?

?

NetComplete: Practical Network-Wide

Configuration Synthesis with Autocompletion

Autocompletes configurations with “holes”

synthesizes configurations for large network in minutes

Phrases the problem as constraints satisfaction

Scales to realistic network size

leaving the concrete parts intact

scales using network-specific heuristics & partial evaluation

NetComplete: Practical Network-Wide

Configuration Synthesis with Autocompletion

Ahmed El-Hassany Petar Tsankov Laurent Vanbever Martin Vechev

NetComplete: Practical Network-Wide

Configuration Synthesis with Autocompletion

Network-wide  
Forwarding state

Network-wide
Configuration

Network
Environment

+ +
Topology

(fixed)

Part 2 Part 1

Controlling distributed computation

through synthesis

software

hardware

Today's
networks

computing

topology

centralized distributed

provisioning

computing

topology

statistics

Tomorrow's
networks

Part 2

What? How? Where?

Network Control Planes

What parts of the CP should we offload (if any)

and how?

Blink [NSDI'19] HW-accelerated CPs [HotNets'18]

What parts of the CP should we offload (if any)

and how?

Blink [NSDI'19] HW-accelerated CPs [HotNets'18]

Blink: Fast Connectivity Recovery Entirely in the Data Plane

Joint work with

Edgar Costa Molero
Maria Apostolaki
Stefano Vissicchio
Alberto Dainotti
Laurent Vanbever

ETH Zürich
ETH Zürich
University College London
CAIDA, UC San Diego
ETH Zürich

Thomas Holterbach
ETH Zürich

NSDI
26th February 2019

https://blink.ethz.ch

 2

www.opte.org

AS level topology
in 2015

 3

www.opte.org

AS level topology
in 2015

 4

Your network

www.opte.org

AS level topology
in 2015

 5

Your network
Local

www.opte.org

AS level topology
in 2015

 6

Remote

Remote

Remote
Remote

Remote

Remote

Your network
Local

Upon local failures, connectivity can be quickly restored

 7

Upon local failures, connectivity can be quickly restored

 8

Fast failure detection
using e.g., hardware-generated signals

Fast traffic rerouting
using e.g., Prefix Independent Convergence
or MPLS Fast Reroute

Upon remote failures, the only way to restore connectivity is
to wait for the Internet to converge

 9

 10

… and the Internet converges very slowly*

*Holterbach et al. SWIFT: Predictive Fast Reroute
ACM SIGCOMM, 2017

Upon remote failures, the only way to restore connectivity is
to wait for the Internet to converge

 11

 12

0 100 200 300 400 500 600
Time difference (s) between the

outage and the first and last withdrawal

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
ov

er
 th

e
BG

P
pe

er
s First

withdrawal

Last
withdrawal

AS11427

Time difference between the outage

CDF over the BGP peers

Time difference between the outage
and the BGP withdrawals (s)

BGP took minutes to converge upon the Time Warner Cable outage in 2014

 13

0 100 200 300 400 500 600
Time difference (s) between the

outage and the first and last withdrawal

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
ov

er
 th

e
BG

P
pe

er
s First

withdrawal

Last
withdrawal

AS11427

Time difference between the outage

CDF over the BGP peers

Time difference between the outage
and the BGP withdrawals (s)

BGP took minutes to converge upon the Time Warner Cable outage in 2014

Control-plane (e.g., BGP) based techniques typically converge slowly
upon remote outages

 14

 15

What about using data-plane signals for fast rerouting?

Control-plane (e.g., BGP) based techniques typically converge slowly
upon remote outages

 16

Blink: Fast Connectivity Recovery Entirely in the Data Plane

Thomas Holterbach
ETH Zürich

NSDI
26th February 2019

https://blink.ethz.ch

Outline

4. Blink works in practice, on existing devices

1. Why and how to use data-plane signals for fast rerouting

2. Blink infers more than 80% of the failures, often within 1s

3. Blink quickly reroutes traffic to working backup paths

 17

Outline

4. Blink works in practice, on existing devices

1. Why and how to use data-plane signals for fast rerouting

2. Blink infers more than 80% of the failures, often within 1s

3. Blink quickly reroutes traffic to working backup paths

 18

TCP flows exhibit the same behavior upon failures

 19

A:1000

S:500

source destination

 20

TCP flows exhibit the same behavior upon failures

A:1000

failure

S:500

source destination

 21

TCP flows exhibit the same behavior upon failures

cwnd:4 pkts

S:4100

t

S:3100

S:2100

S:1000

A:1000

failure

(=congestion window)

S:500

source destination

 22

TCP flows exhibit the same behavior upon failures

RTO: 200ms cwnd:4 pkts

S:4100

t

S:3100

S:2100

S:1000

A:1000

failure

(=congestion window)

S:500

source destination

 23

TCP flows exhibit the same behavior upon failures

Retransmission timeout (RTO)
 = SRTT + 4∗RTT_VAR

RTO: 200ms cwnd:4 pkts

S:4100

t

t + 200ms cwnd:1

S:3100

S:2100

S:1000

A:1000

failure

(=congestion window)

S:500

source destination

 24

TCP flows exhibit the same behavior upon failures

S:1000

Retransmission timeout (RTO)
 = SRTT + 4∗RTT_VAR

RTO: 200ms cwnd:4 pkts

S:4100

t

t + 200ms cwnd:1

cwnd:1

S:3100

S:2100

S:1000

A:1000

failure

exponential
backoff

(=congestion window)

t + 600ms

……

S:500

source destination

 25

TCP flows exhibit the same behavior upon failures

S:1000

S:1000

Retransmission timeout (RTO)
 = SRTT + 4∗RTT_VAR

RTO: 200ms cwnd:4 pkts

S:4100

t

t + 200ms cwnd:1

cwnd:1

S:3100

S:2100

S:1000

A:1000

failure

exponential
backoff

(=congestion window)

t + 600ms

…

…
…

…

t + 1400ms cwnd:1

S:500

source destination

 26

TCP flows exhibit the same behavior upon failures

S:1000

S:1000

S:1000

Retransmission timeout (RTO)
 = SRTT + 4∗RTT_VAR

When multiple flows experience the same failure  
the signal is a wave of retransmissions

 27

*CAIDA equinix-chicago
direction A, 2015

 28

Same RTT distribution
than in a real trace*

We simulated a failure affecting
100k flows with NS3

When multiple flows experience the same failure  
the signal is a wave of retransmissions

0 1 2 3 4 5 6 7
Time (s)

0

10K

20K

30K

40K

50K

60K

70K

N
um

be
r o

f r
et

ra
ns

m
is

si
on

s

Fa
ilu

re

 29

*CAIDA equinix-chicago
direction A, 2015

Same RTT distribution
than in a real trace*

Number of
retransmissions

Time (s)

We simulated a failure affecting
100k flows with NS3

When multiple flows experience the same failure  
the signal is a wave of retransmissions

0 1 2 3 4 5 6 7
Time (s)

0

10K

20K

30K

40K

50K

60K

70K

N
um

be
r o

f r
et

ra
ns

m
is

si
on

s

Fa
ilu

re

 30

*CAIDA equinix-chicago
direction A, 2015

Same RTT distribution
than in a real trace*

Number of
retransmissions

Time (s)

We simulated a failure affecting
100k flows with NS3

When multiple flows experience the same failure  
the signal is a wave of retransmissions

0 1 2 3 4 5 6 7
Time (s)

0

10K

20K

30K

40K

50K

60K

70K

N
um

be
r o

f r
et

ra
ns

m
is

si
on

s

Fa
ilu

re

 31

*CAIDA equinix-chicago
direction A, 2015

Same RTT distribution
than in a real trace*

0 1 2 3 4 5 6 7
Time (s)

0

10K

20K

30K

40K

50K

60K

70K

N
um

be
r o

f r
et

ra
ns

m
is

si
on

s

Fa
ilu

re

Number of
retransmissions

Time (s)

We simulated a failure affecting
100k flows with NS3

When multiple flows experience the same failure  
the signal is a wave of retransmissions

 32

*CAIDA equinix-chicago
direction A, 2015

Same RTT distribution
than in a real trace*

0 1 2 3 4 5 6 7
Time (s)

0

10K

20K

30K

40K

50K

60K

70K

N
um

be
r o

f r
et

ra
ns

m
is

si
on

s

Fa
ilu

re

Number of
retransmissions

Time (s)

We simulated a failure affecting
100k flows with NS3

When multiple flows experience the same failure  
the signal is a wave of retransmissions

 33

*CAIDA equinix-chicago
direction A, 2015

Same RTT distribution
than in a real trace*

We simulated a failure affecting
100k flows with NS3

When multiple flows experience the same failure  
the signal is a wave of retransmissions

0 1 2 3 4 5 6 7
Time (s)

0

10K

20K

30K

40K

50K

60K

70K

N
um

be
r o

f r
et

ra
ns

m
is

si
on

s

Fa
ilu

re

Time (s)

Number of
retransmissions

 34

*CAIDA equinix-chicago
direction A, 2015

Same RTT distribution
than in a real trace*

0 1 2 3 4 5 6 7
Time (s)

0

10K

20K

30K

40K

50K

60K

70K

N
um

be
r o

f r
et

ra
ns

m
is

si
on

s

Fa
ilu

re

Time (s)

Number of
retransmissions

We simulated a failure affecting
100k flows with NS3

When multiple flows experience the same failure  
the signal is a wave of retransmissions

Outline

4. Blink works in practice, on existing devices

1. Why and how to use data-plane signals for fast rerouting

2. Blink infers more than 80% of the failures, often within 1s

3. Blink quickly reroutes traffic to working backup paths

 35

To detect failures, Blink looks at TCP retransmissions

 36

To detect failures, Blink looks at TCP retransmissions
Problem: TCP retransmissions can be unrelated to a failure (i.e., noise)

 37

 38

number of
retransmissions

Time

To detect failures, Blink looks at TCP retransmissions
Problem: TCP retransmissions can be unrelated to a failure (i.e., noise)

 39

number of
retransmissions

Time

congestions

To detect failures, Blink looks at TCP retransmissions
Problem: TCP retransmissions can be unrelated to a failure (i.e., noise)

 40

number of
retransmissions

Time

one "bogus" flow

To detect failures, Blink looks at TCP retransmissions
Problem: TCP retransmissions can be unrelated to a failure (i.e., noise)

 41

number of
retransmissions

Time

failure

To detect failures, Blink looks at TCP retransmissions
Problem: TCP retransmissions can be unrelated to a failure (i.e., noise)

Solution #1: Blink looks at consecutive packets
with the same sequence number

RTO: 200ms cwnd:4 pkts

S:4100

t

t + 200ms cwnd:1

cwnd:1

S:3100

S:2100

S:1000

A:1000

failure

exponential
backoff

(=congestion window)

t + 600ms

…

…
…

…

t + 1400ms cwnd:1

S:500

source destination

S:1000

S:1000

S:1000

Retransmission timeout (RTO)
 = SRTT + 4∗RTT_VAR

Solution #1: Blink looks at consecutive packets
with the same sequence number

 44

Solution #2: Blink monitors the number of flows experiencing
retransmissions over time using a sliding window

 45

number of
retransmissions

Time

number of flows
experiencing
retransmissions

Solution #2: Blink monitors the number of flows experiencing
retransmissions over time using a sliding window

congestions
one "bogus" flow

failure

 46

number of
retransmissions

Time

number of flows
experiencing
retransmissions

Solution #2: Blink monitors the number of flows experiencing
retransmissions over time using a sliding window

congestions
one "bogus" flow

failure

 47

number of
retransmissions

Time

number of flows
experiencing
retransmissions

Solution #2: Blink monitors the number of flows experiencing
retransmissions over time using a sliding window

congestions
one "bogus" flow

failure

 48

number of
retransmissions

Time

number of flows
experiencing
retransmissions

Solution #2: Blink monitors the number of flows experiencing
retransmissions over time using a sliding window

congestions
one "bogus" flow

failure

 49

number of
retransmissions

Time

number of flows
experiencing
retransmissions

Solution #2: Blink monitors the number of flows experiencing
retransmissions over time using a sliding window

congestions
one "bogus" flow

failure

 50

number of
retransmissions

Time

number of flows
experiencing
retransmissions

Solution #2: Blink monitors the number of flows experiencing
retransmissions over time using a sliding window

congestions
one "bogus" flow

failure

 51

number of
retransmissions

Time

number of flows
experiencing
retransmissions

800ms

congestions
one "bogus" flow

failure

Solution #2: Blink monitors the number of flows experiencing
retransmissions over time using a sliding window

 52

number of
retransmissions

Time

number of flows
experiencing
retransmissions

congestions
one "bogus" flow

failure

Solution #2: Blink monitors the number of flows experiencing
retransmissions over time using a sliding window

 53

Blink is intended to run in programmable switches

 54

Blink is intended to run in programmable switches
Problem: those switches have very limited resources

Solution #1: Blink focuses on the popular prefixes,
i.e., the ones that attract data traffic

 55

 56

As Internet traffic follows a Zipf-like distribution* (1k pref. account for >50%),
Blink covers the vast majority of the Internet traffic

*Sarra et al. Leveraging Zipf’s Law for Traffic offloading
ACM CCR, 2012

Solution #1: Blink focuses on the popular prefixes,
i.e., the ones that attract data traffic

Solution #2: Blink monitors a sample of the flows
for each monitored prefix

 57

TCP flows

Traffic to a destination prefix

 58

TCP flows

Traffic to a destination prefix

Solution #2: Blink monitors a sample of the flows
for each monitored prefix

default 64 flows
monitored

To monitor active flows, Blink evicts a flow from the sample
if it does not send a packet for a given time (default 2s)

 59

 60

and selects a new one in a
first-seen, first-selected manner

To monitor active flows, Blink evicts a flow from the sample
if it does not send a packet for a given time (default 2s)

 61

Blink infers a failure for a prefix when the majority of
the monitored flows experience retransmissions

 62

Time

number of flows
experiencing
retransmissions

Blink infers a failure for a prefix when the majority of
the monitored flows experience retransmissions

 63

Time

number of flows
experiencing
retransmissions

32

FAILURE

Blink infers a failure for a prefix when the majority of
the monitored flows experience retransmissions

We evaluated Blink failure inference using 15 real traces,
13 from CAIDA, 2 from MAWI, covering a total of 15.8 hours

We evaluated Blink failure inference using 15 real traces,
13 from CAIDA, 2 from MAWI, covering a total of 15.8 hours

We are interested in:

Accuracy: True Positive Rate vs False Positive Rate

Speed: How long does Blink take to infer failures

As we do not have ground truth, we generated synthetic traces
following the traffic characteristics extracted from the real traces

 66

 67

Step #1 - We extracted the RTT, Packet rate, Flow duration
from the real traces

Step #2 - We used NS3 to replay these flows
and simulate a failure

Step #3 - We ran a Python-based version of Blink
on the resulting traces

As we do not have ground truth, we generated synthetic traces
following the traffic characteristics extracted from the real traces

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
Trace ID

0.0

0.2

0.4

0.6

0.8
Tr

ue
 P

os
iti

ve
 R

at
e

 68

Blink failure inference accuracy is above 80% for 13 real traces out of 15

Real traces ID

True Positive Rate

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
Trace ID

0.0

0.2

0.4

0.6

0.8
Tr

ue
 P

os
iti

ve
 R

at
e

 69

Real traces ID

True Positive Rate

Blink failure inference accuracy is above 80% for 13 real traces out of 15

 70

Blink avoids incorrectly inferring failures when packet loss is below 4%

packet loss % 1 2 3 4 5 8 9…

False Positive Rate

 71

Blink avoids incorrectly inferring failures when packet loss is below 4%

packet loss % 1 2 3 4 5 8 9

0 0 0 0.67 0.67 1.3 2.7False Positive Rate …

…

 72

Blink infers a failure within 1s for the majority of the cases

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
Trace ID

0

2

4

6
Sp

ee
d

(s
)

1s

Real traces ID

Speed (s)

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
Trace ID

0

2

4

6
Sp

ee
d

(s
)

1s

 73

Blink infers a failure within 1s for the majority of the cases

Real traces ID

Speed (s)

Outline

4. Blink works in practice, on existing devices

1. Why and how to use data-plane signals for fast rerouting

2. Blink infers more than 80% of the failures, often within 1s

3. Blink quickly reroutes traffic to working backup paths

 74

 75

Upon detection of a failure, Blink immediately activates
backup paths pre-populated by the control-plane

Problem: since the rerouting is done entirely in the data-plane,
Blink cannot prevent forwarding issues

 77

AS3 (backup #2)

AS2
(backup #1)

AS1 (primary)

Blink

destination

Problem: since the rerouting is done entirely in the data-plane,
Blink cannot prevent forwarding issues

AS4

Problem: since the rerouting is done entirely in the data-plane,
Blink cannot prevent forwarding issues

AS3 (backup #2)

AS2
(backup #1)

AS1 (primary)

Blink

destination

AS4

Problem: since the rerouting is done entirely in the data-plane,
Blink cannot prevent forwarding issues

AS3 (backup #2)

AS2
(backup #1)

AS1 (primary)

Blink

destination

AS4

BLACKHOLE

Problem: since the rerouting is done entirely in the data-plane,
Blink cannot prevent forwarding issues

AS3 (backup #2)

AS2
(backup #1)

AS1 (primary)

Blink

destination

AS4

LOOP

 81

Solution: As for failures, Blink uses data-plane signals
to pick a working backup path

AS3 (backup #2)

AS2
(backup #1)

AS1 (primary)

Blink

destination

AS4

32 monitored
flows

32 monitored flows +
the non-monitored ones

The probing period
lasts up to 1s

Solution: As for failures, Blink uses data-plane signals
to pick a working backup path

AS3 (backup #2)

AS2
(backup #1)

AS1 (primary)

Blink

destination

AS4

Solution: As for failures, Blink uses data-plane signals
to pick a working backup path

As for failures, Blink compares the sequence number of
consecutive packets to detect blackholes or loops*

 84

*See the paper for an evaluation of the rerouting

Outline

4. Blink works in practice, on existing devices

1. Why and how to use data-plane signals for fast rerouting

2. Blink infers more than 80% of the failures, often within 1s

3. Blink quickly reroutes traffic to working backup paths

 85

 86

We ran Blink on the 15 real traces (15.8 hours)

 87

We ran Blink on the 15 real traces (15.8 hours)
and it detected 6 outages, each affecting at least 42% of all the flows

 88

On current programmable switches, Blink supports up to 10k prefixes

On current programmable switches, Blink supports up to 10k prefixes

 89

Number of prefixes

Memory

 90

Number of prefixes

Memory

1 pref.

6418 bits

On current programmable switches, Blink supports up to 10k prefixes

 91

Number of prefixes

Memory

1 pref.

6418 bits

8 Mb

10k pref.

On current programmable switches, Blink supports up to 10k prefixes

Blink works on a real Barefoot Tofino switch

Blink works on a real Barefoot Tofino switch

TOFINO

Blink works on a real Barefoot Tofino switch

TOFINO

Source

Destination

Number of packets
every 100ms

Time (s)

RTTs in [10ms; 300ms]

 95

Blink works on a real Barefoot Tofino switch

Number of packets
every 100ms

Time (s)

RTTs in [10ms; 300ms]

 96

Blink works on a real Barefoot Tofino switch

Number of packets
every 100ms

Time (s)

RTTs in [10ms; 300ms]

 97

1.1s

Blink works on a real Barefoot Tofino switch

Blink: Fast Connectivity Recovery Entirely in the Data Plane

Infers failures from data-plane signals
with more than 80% accuracy, and often within 1s

Fast reroutes traffic at line rate
to working backup paths

Works on real traffic traces and on existing devices

https://blink.ethz.ch

Blink: Fast Connectivity Recovery Entirely in the Data Plane

Joint work with

Edgar Costa Molero
Maria Apostolaki
Stefano Vissicchio
Alberto Dainotti
Laurent Vanbever

ETH Zürich
ETH Zürich
University College London
CAIDA, UC San Diego
ETH Zürich

Thomas Holterbach
ETH Zürich

NSDI
26th February 2019

0 1 2 3 4 5 6 7
Time (s)

0

10K

20K

30K

40K

50K

60K

N
um

be
r o

f r
et

ra
ns

m
is

si
on

s

Fa
ilu

re

 100

*CAIDA equinix-chicago
direction A, 2015

Same RTT distribution
than in a real trace*

Time (s)

Number of
retransmissions

We simulated a failure affecting
100k flows with NS3

When multiple flows experience the same failure  
the signal is a wave of retransmissions

RTT x1.5

0 1 2 3 4 5 6 7
Time (s)

0

10K

20K

30K

40K

50K

60K

N
um

be
r o

f r
et

ra
ns

m
is

si
on

s

Fa
ilu

re

 101

Time (s)

When multiple flows experience the same failure  
the signal is a wave of retransmissions

RTT x1.5

0 1 2 3 4 5 6 7
Time (s)

0

10K

20K

30K

40K

50K

60K

70K

N
um

be
r o

f r
et

ra
ns

m
is

si
on

s

Fa
ilu

re

 102

Blink failure inference accuracy is close to a best case scenario,
and is above 80% for 13 real traces out of 15

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
Trace ID

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

"best case", i.e.,
no sampling but
threshold still 32

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
Trace ID

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e
Blink

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
Trace ID

0

2

4

6
Sp

ee
d

(s
)

1s

 103

Blink infers a failure within 1s for the majority of the cases

"best case", i.e.,
no sampling but
threshold still 32

Blink

Real traces ID

Speed (s)

 104

Blink avoids incorrectly inferring failures when packet loss is below 4%

packet loss % 1 2 3 4 5 8 9

0 0 0 0.67 0.67 1.3 2.7

False Positive Rate

Blink

no sampling but
threshold still 32 59 85 93 94 95 97

…

…

… 98

Blink quickly infers and avoids forwarding loops

Time (s)

Number of packets
every 100ms

What parts of the CP should we offload (if any)

and how?

Blink [NSDI'19] HW-accelerated CPs [HotNets'18]

Hardware-Accelerated
Network Control Planes

Edgar Costa Molero(1),

Stefano Vissicchio(2), Laurent Vanbever(1)

(2)(1)

http://nsg.ee.ethz.ch

 2

Software-based control planes have room
for improvements

 3

Reaction time1 It can take seconds to minutes 
to detect failures

Software-based control planes have room
for improvements

 4

Reaction time1

Compute2 It can take minutes to recompute  
an entire forwarding table

Software-based control planes have room
for improvements

 5

Reaction time1

Compute2

Update3 It takes ~100us to update  
a single forwarding entry

Software-based control planes have room
for improvements

 6

Modern programmable devices can perform  
computations on billions of packets per second

 7

Read & modify packet headers

e.g. to update network state

Perform (simple) operations

e.g. min & max

Add or remove custom headers

e.g. to carry routing information

Maintain state

e.g. to save best paths

Modern programmable devices can perform  
computations on billions of packets per second

Could we offload control-plane tasks to the data plane?

Could we offload control-plane tasks to the data plane?

Yes… but…

Could we offload control-plane tasks to the data plane?

sensing, notification, computation

Could we offload control-plane tasks to the data plane?

sensing, notification, computation

Could we offload control-plane tasks to the data plane?

 13

A B

Switches can precisely "sense" the network by  
synchronously exchanging packet counts

 14

A B

destination

counter

detection state

stored in registers

0

0

0

0

0

0

counter

destination

Switches can precisely "sense" the network by  
synchronously exchanging packet counts

 15

A B

start  
counting

stop  
counting

traffic

destination

received & forwarded packets

detection state

stored in registers

0

0

0

0

0

0

sent packets

destination

Upstream switch starts probing  
campaigns

 16

A B

start  
counting

stop  
counting

traffic

destination

received & forwarded packets

detection state

stored in registers

0

0

0

0

0

0

sent packets

destination

red packets  
get dropped 

Traffic for some prefixes  
gets dropped

 17

A B

start  
counting

stop  
counting

traffic

destination

received & forwarded packets

detection state

stored in registers

send counters & compare

0

2

2

3

2

2

sent packets

destination

Downstream switch sends counters 
to upstream

 18

A B

start  
counting

stop  
counting

traffic

destination

received & forwarded packets

detection state

stored in registers

send counters & compare

0

2

2

3

2

2

sent packets

destination

Upstream switch detects the failure  
by comparing counters

sensing, notification, computation

Could we offload control-plane tasks to the data plane?

 20

▸ Use per switch broadcast sequence numbers

▸ Send notification duplicates

▸ Use maximum priority queues

Avoid broadcast storms

Simple reliable communication

Upon detecting a failure,
switches can flood notifications network-wide

sensing, notification, computation

Could we offload control-plane tasks to the data plane?

 22

Switches can run distributed routing protocols
in hardware

 23

B C DA
1

0output port

prefix-to-  
index

link cost

A

port cost path

…
50

50 1 3 [A B C D]

forwarding state

stored in registers

11

10

C
10
1

1

Switches can run distributed routing protocols
in hardware

 24

B C DA
1

0output port

prefix-to-  
index

link cost

A statically  
configured

port cost path

…
50

50 1 3 [A B C D]

forwarding state

stored in registers

11

10

C
10
1

1

maps prefixes 
 to registers

destination 
network

Statically configured tables map prefixes to  
registers in memory

 25

B C DA
1

0output port

prefix-to-  
index

link cost

A statically  
configured

port cost path

…
50

50 1 3 [A B C D]

forwarding state

stored in registers

11

10

C
10
1

1

maps prefixes 
 to registers

only store the best path 
and its attributes

destination 
network

Registers store best paths and  
its attributes

 26

B C DA
1

0output port

prefix-to-  
index

link cost

A
…

50

11

10

C
10
1

1

destination path

0 [A]

cost

0 [A]

periodically 
advertise vectors

port cost path

50 -1 ∞ Ø

forwarding state

stored in registers

dynamically 
computed

If (10 + 0) < ∞

50 0 10 [A D]

Switches periodically advertise vectors 
to neighbors

 27

B C DA
1

0output port

prefix-to-  
index

link cost

A

port cost path

…
50

50 0 10 [A D]

forwarding state

stored in registers

11

10

C
10
1

1

destination path

1 [A]

cost

Switches periodically advertise vectors 
to neighbors

 28

B C DA
1

0output port

11

10

1

destination path

2 [A]

cost

prefix-to-  
index

link cost

A statically  
configured

…
50

dynamically 
computed

If (2 + 1) < 10

50 1 3

C
10
1

port cost path

50 0 10 [A D]

forwarding state

stored in registers
[A B C D]

Switches periodically advertise vectors 
to neighbors

 29

B C DA
1

0output port

prefix-to-  
index

link cost

A statically  
configured

port cost path

…
50

50 1 3 [A B C D]

forwarding state

stored in registers

11

10

C
10
1link failure

Computing new forwarding state  
after a a link failure

 30

B C DA

destination path

1

0output port

prefix-to-  
index

link cost

A statically  
configured

port cost path

…
50

50 1 3 [A B C D]

forwarding state

stored in registers

11

10

∞ Ø

dynamically 
computed

50 -1 ∞

C
10
1

Ø

costlink failure

Computing new forwarding state  
after a a link failure

 31

B C DA
1

0output port

data-plane-generated  
path-vector

prefix-to-  
index

link cost

A statically  
configured

port cost path

…
50

50 -1 ∞ Ø

forwarding state

stored in registers

11

10

0 [A]

dynamically 
computed

If (10 + 0) < ∞

50 0 10 [A D]

C
10
1link failure

Computing new forwarding state  
after a a link failure

 32

Does it actually work?

 33

Does it actually work? Yes!

 34

Compiled it to bmv2

2k LoC

Implemented in P416

path-vector routing

▸ Intra-domain destinations

▸ Inter-domain destinations

BGP-like route selection

We built a P416 prototype
(we're working on a Tofino implementation)

Implementation

Capabilities

 35

A

S2

S3

S4 S5

B

C

D

F

S1

AS1

AS2

AS3

AS4

AS5

G

H

x

p2

p1

AS7

3

1

1

1

3

2

2

peer

cust

cust

peer

peer

E

AS6

We tested our implementation in a simple case study

 36

A

S2

S3

S4 S5

B

C

D

F

S1

AS1

AS2

AS3

AS4

AS5

G

H

x

p2

p1

AS7

3

1

1

1

3

2

2

peer

cust

cust

peer

peer

E

AS6

Only the internal switches run the  
hardware-based control plane

 37

A

S2

S3

S4 S5

B

C

D

F

S1

AS1

AS2

AS3

AS4

AS5

G

H

x

p2

p1

AS7

3

1

1

1

3

2

2

peer

cust

cust

peer

peer

E

AS6

Each switch is connected to an external  
peer or customer

 38

A

S2

S3

S4 S5

B

C

D

F

S1

AS1

AS2

AS3

AS4

AS5

G

H

x

p2

p1

AS7

3

1

1

1

3

2

2

peer

cust

cust

peer

peer

E

AS6

We generate two TCP flows 
from AS1 and AS2

 39

A

S2

S3

S4 S5

B

C

D

F

S1

AS1

AS2

AS3

AS4

AS5

G

H

x

p2

p1

AS7

3

1

1

1

3

2

2

peer

cust

cust

peer

peer

E

AS6

LLnk (S1-AS3)

)low from AS1)low from AS2

LLnk (S5-AS5)

time [s]

Bandwidth  
[Mbps]

0 4.8 15 25

0

10

4

6

Traffic S1- AS3

Switches monitor the traffic

 40

A

S2

S3

S4 S5

B

C

D

F

S1

AS1

AS2

AS3

AS4

AS5

G

H

x

p2

p1

AS7

3

1

1

1

3

2

2

peer

cust

cust

peer

peer

E

AS6

(1) internal Link
failure

LLnk (S1-AS3)

)low from AS1)low from AS2

LLnk (S5-AS5)

time [s]

Bandwidth  
[Mbps]

0 4.8 15 25

S2 to S3  
link failure

0

10

4

6

Traffic S1- AS3

Internal link fails, triggering 
the path-vector algorithm

 41

A

S2

S3

S4 S5

B

C

D

F

S1

AS1

AS2

AS3

AS4

AS5

G

H

x

p2

p1

AS7

3

1

1

1

3

2

2

peer

cust

cust

peer

peer

E

AS6

(1) internal Link
failure

LLnk (S1-AS3)

)low from AS1)low from AS2

LLnk (S5-AS5)

time [s]

Bandwidth  
[Mbps]

0 4.8 15 25

S2 to S3  
link failure

0

10

4

6

Traffic S1- AS3

 42

A

S2

S3

S4 S5

B

C

D

F

S1

AS1

AS2

AS3

AS4

AS5

G

H

x

p2

p1

AS7

3

1

1

1

3

2

2

peer

cust

cust

peer

peer

E

AS6

(1) internal Link
failure

(2) external
Link failure

(3) prefix x
withdrawal

LLnk (S1-AS3)

)low from AS1)low from AS2

LLnk (S5-AS5)

time [s]

Bandwidth  
[Mbps]

0 4.8 15 25

S2 to S3  
link failure

withdrawal

0

10

4

6

Traffic S1- AS3

External link failure triggers a  
prefix withdrawal

 43

A

S2

S3

S4 S5

B

C

D

F

S1

AS1

AS2

AS3

AS4

AS5

G

H

x

p2

p1

AS7

3

1

1

1

3

2

2

peer

cust

cust

peer

peer

E

AS6

(1) internal Link
failure

(2) external
Link failure

(3) prefix x
withdrawal

(4) BGP export 
policy violation

LLnk (S1-AS3)

)low from AS1)low from AS2

LLnk (S5-AS5)

time [s]

Bandwidth  
[Mbps]

0 4.8 15 25

withdrawal

0

10

4

6

Traffic S5- AS5

Network computes new egress 
and applies new policies

Could we offload control-plane tasks to the data plane?

Yes… but…

 45

Programmable hardware is not limitless

 46

Some tasks cannot be offloaded

while offloading others is not desirable

Reliable protocols

e.g. TCP requires too much state

Poor scalability of control plane tasks

hardware memory is scarce and expensive

Programmable hardware is not limitless

 47

Can we have the best of both worlds?

 48

Specification Optimization Synthesis

functions

Costi(.)
Performancei(.)

constraints

Software

Hardware

problem 
graph

mapping  
set

architecture  
graph

∀i:
 pred(i)<100

Hardware-software codesign

 49

Specification Optimization

functions min
n

∑
i= 1

Costi(.)

max
n

∑
i= 1

Performancei(.)
Costi(.)

constraints

Software

Hardware

problem 
graph

mapping  
set

architecture  
graph

∀i:
 pred(i)<100

Software

Hardware

Software

Hardware

 cost(x):120

 perf(x):200

 cost(y):80

 perf(y):200

Synthesis

Performancei(.)

Hardware-software codesign

 50

Specification Optimization Synthesis

Software

Hardware

functions

runtime  
API

configurations P4 code

min
n

∑
i= 1

Costi(.)

max
n

∑
i= 1

Performancei(.)
Costi(.)

constraints

Software

Hardware

problem 
graph

mapping  
set

architecture  
graph

configurations C/C++

∀i:
 pred(i)<100

Software

Hardware

Software

Hardware

 cost(x):120

 perf(x):200

 cost(y):80

 perf(y):200

Performancei(.)

Hardware-software codesign

Find out more about our "quest"

https://nsg.ee.ethz.ch

https://nsg.ee.ethz.ch

How? Where? Why?!

Network Control Planes

Dagstuhl Seminar

Laurent Vanbever

Wed Apr 3 2019

nsg.ee.ethz.ch

