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deriving compliant paths
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flow-level, router-level, network-level
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ABSTRACT

Centralizing routing decisions offers tremendous flexi-
bility, but sacrifices the robustness of distributed proto-
cols. In this paper, we present Fibbing, an architecture
that achieves both flexibility and robustness through
central control over distributed routing. Fibbing intro-
duces fake nodes and links into an underlying link-state
routing protocol, so that routers compute their own for-
warding tables based on the augmented topology. Fib-
bing is expressive, and readily supports flexible load bal-
ancing, traffic engineering, and backup routes. Based
on high-level forwarding requirements, the Fibbing con-
troller computes a compact augmented topology and
injects the fake components through standard routing-
protocol messages. Fibbing works with any unmodified
commercial routers speaking OSPF. Our experiments
also show that it can scale to large networks with many
forwarding requirements, introduces minimal overhead,
and quickly reacts to network and controller failures.

CCS Concepts

eNetworks — Routing protocols; Network architec-
tures; Programmable networks; Network management;

Keywords
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1. INTRODUCTION

Consider a large IP network with hundreds of devices,
including the components shown in Fig. [la. A set of
IP addresses (D;) see a sudden surge of traffic, from
multiple entry points (A, D, and E), that congests a
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part of the network. As a network operator, you suspect
a denial-of-service attack (DoS), but cannot know for
sure without inspecting the traffic as it could also be a
flash crowd. Your goal is therefore to: (i) isolate the
flows destined to these IP addresses, (ii) direct them
to a scrubber connected between B and C', in order to
“clean” them if needed, and (iii) reduce congestion by
load-balancing the traffic on unused links, like (B, E).
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Figure 1: Fibbing can steer the initial forward-
ing paths (see (a)) for D; through a scrubber by
adding fake nodes and links (see (b)).

Performing this routine task is very difficult in tra-
ditional networks. First, since the middlebox and the
destinations are not adjacent to each other, the con-
figuration of multiple devices needs to change. Also,
since intra-domain routing is typically based on short-
est path algorithms, modifying the routing configura-
tion is likely to impact many other flows not involved
in the attack. In Fig. 1a, any attempt to reroute flows
to Dy would also reroute flows to Dy since they home
to the same router. Advertising D; from the middlebox
would attract the right traffic, but would not necessar-
ily alleviate the congestion, because all D; traffic would
traverse (and congest) path (A, D, E, B), leaving (A, B)
unused. Well-known Traffic-Engineering (TE) protocols
(e.g., MPLS RSVP-TE [1]) could help. Unfortunately,
since Dy traffic enters the network from multiple points,
many tunnels (three, on A, D, and E, in our tiny ex-
ample) would need to be configured and signaled. This
increases both control-plane and data-plane overhead.

Software Defined Networking (SDN) could easily solve
the problem as it enables centralized and direct con-
trol of the forwarding behavior. However, moving away
from distributed routine protocols comes at a cost. In-
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Abstract

Network operators often need to adapt the configuration
of a network in order to comply with changing rout-
ing policies. Evolving existing configurations, however,
is a complex task as local changes can have unforeseen
global effects. Not surprisingly, this often leads to mis-
takes that result in network downtimes.

We present NetComplete, a system that assists oper-
ators in modifying existing network-wide configurations
to comply with new routing policies. NetComplete takes
as input configurations with “holes” that identify the
parameters to be completed and “autocompletes” these
with concrete values. The use of a partial configuration
addresses two important challenges inherent to existing
synthesis solutions: (i) it allows the operators to precisely
control how configurations should be changed; and (ii) it
allows the synthesizer to leverage the existing configura-
tions to gain performance. To scale, NetComplete relies
on powerful techniques such as counter-example guided
inductive synthesis (for link-state protocols) and partial
evaluation (for path-vector protocols).

‘We implemented NetComplete and showed that it can
autocomplete configurations using static routes, OSPF,
and BGP. Our implementation also scales to realistic net-
works and complex routing policies. Among others, it is
able to synthesize configurations for networks with up to
200 routers within few minutes.

1 Introduction

In a world where more and more critical services con-
verge on IP, even slight network downtimes can cause
large financial or reputational losses. This strategic im-
portance contrasts with the fact that managing a net-
work is surprisingly hard and brittle. Out of high-level
requirements, network operators have to come up (often
manually) with low-level configurations specifying the
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tributed protocols. A single misconfiguration can bring
down the network infrastructure, or worse, a piece of
the Internet in case of BGP-related misconfigurations.
Every few months downtimes involving major players
such as NYSE [1], Google [2], Facebook [3], or United
Airlines [4] make the news. Actually, studies show that
human-induced misconfigurations, not physical failures,
explain the majority of downtimes [5].

To address these challenges, recently there has been
an increased interest in configuration verification [6, 7,
8,9, 10, 11, 12, 13] and synthesis [14, 15, 16, 17, 18,
19, 20]. Configuration synthesis in particular promises
to alleviate most of the operator’s burdens by deriving
correct configurations out of high-level objectives.

Challenges in network synthesis While promising, net-
work operators can still be reluctant to use existing syn-
thesis systems for at least three reasons: (i) interpretabil-
ity: the synthesizer can produce configurations that differ
wildly from manually provided ones, making it hard to
understand what the resulting configuration does. More-
over, small policy changes can cause the synthesized
configuration (or configuration templates in the case of
PropaneAT [16]) to change radically; (ii) protocol cov-
erage: existing systems [15, 16] are restricted to produc-
ing BGP-only configurations, while most networks rely
on multiple routing protocols (e.g., to leverage OSPF’s
fast-convergence capabilities); and (iii) scalability: re-
cent synthesizers such as SyNET [20] handle multiple
protocols but do not scale to realistic networks.

NetComplete We present a system, NetComplete,
which addresses the above challenges with partial syn-
thesis. Rather than synthesizing a new configuration
from scratch, NetComplete allows network operators
to express their intent by sketching parts of the ex-
isting configuration that should remain intact (captur-
ing a high-level insight) and “holes” represented with

symbolic values which the synthesizer should instanti-
ata (oo OCPE weichte ROP imvmert /oavamet melimiac)
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Abstract

We present Blink, a data-driven system that leverages TCP-
induced signals to detect failures directly in the data plane.
The key intuition behind Blink is that a TCP flow exhibits a
predictable behavior upon disruption: retransmitting the same
packet over and over, at epochs exponentially spaced in time.
When compounded over multiple flows, this behavior creates
a strong and characteristic failure signal. Blink efficiently
analyzes TCP flows to: (i) select which ones to track; (ii)
reliably and quickly detect major traffic disruptions; and (iii)
recover connectivity—all this, completely in the data plane.

‘We present an implementation of Blink in P4 together with
an extensive evaluation on real and synthetic traffic traces.
Our results indicate that Blink: (i) achieves sub-second rerout-
ing for large fractions of Internet traffic; and (ii) prevents
unnecessary traffic shifts even in the presence of noise. We
further show the feasibility of Blink by running it on an actual
Tofino switch.

1 Introduction

Thanks to widely deployed fast-convergence frameworks
such as IPFFR [35], Loop-Free Alternate [7] or MPLS Fast
Reroute [29], sub-second and ISP-wide convergence upon link
or node failure is now the norm [6, 15]. At a high-level, these
fast-convergence frameworks share two common ingredients:
(i) fast detection by leveraging hardware-generated signals
(e.g., Loss-of-Light or unanswered hardware keepalive [23]);
and (ii) quick activation by promptly activating pre-computed
backup state upon failure instead of recomputing the paths
on-the-fly.

Problem: Convergence upon remote failures is still slow.
These frameworks help ISPs to retrieve connectivity upon
internal (or peering) failures but are of no use when it comes
to restoring connectivity upon remote failures. Unfortunately,
remote failures are both frequent and slow to repair, with aver-
age convergence times above 30's [19, 24, 28]. These failures
indeed trigger a control-plane-driven convergence through
the propacation of BGP updates on a per-router and per-prefix
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Figure 1: It can take minutes to receive the first BGP update
following data-plane failures during which traffic is lost.

basis. To reduce convergence time, SWIFT [19] predicts the
entire extent of a remote failure from a few received BGP
updates, leveraging the fact that such updates are correlated
(e.g., they share the same AS-PATH). The fundamental prob-
lem with SWIFT though, is that it can take O(minutes) for
the first BGP update to propagate after the corresponding
data-plane failure.

We illustrate this problem through a case study, by mea-
suring the time the first BGP updates took to propagate after
the Time Warner Cable (TWC) networks were affected by an
outage on August 27 2014 [1]. We consider as outage time 7o,
the time at which traffic originated by TWC ASes observed
at a large darknet [10] suddenly dropped to zero. We then col-
lect, for each of the routers peering with RouteViews [27] and
RIPE RIS [2], the timestamp 7, of the first BGP withdrawal
they received from the same TWC ASes. Figure | depicts
the CDFs of (1] —ty) over all the BGP peers (100+ routers,
in most cases) that received withdrawals for 7 TWC ASes:
more than half of the peers took more than a minute to receive
the first update (continuous lines). In addition, the CDFs of
the time difference between the outage and the last prefix
withdrawal for each AS, show that BGP convergence can be
as slow as several minutes (dashed lines).
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ABSTRACT

One design principle of modern network architecture seems
to be set in stone: a software-based control plane drives a
hardware- or software-based data plane. We argue that it is
time to revisit this principle after the advent of programmable
switch ASICs which can run complex logic at line rate.

We explore the possibility and benefits of accelerating the
control plane by offloading some of its tasks directly to the net-
work hardware. We show that programmable data planes are
indeed powerful enough to run key control plane tasks includ-
ing: failure detection and notification, connectivity retrieval,
and even policy-based routing protocols. We implement in P4
a prototype of such a “hardware-accelerated” control plane,
and illustrate its benefits in a case study.

Despite such benefits, we acknowledge that offloading
tasks to hardware is not a silver bullet. We discuss its tradeoffs
and limitations, and outline future research directions towards
hardware-software codesign of network control planes.

1 INTRODUCTION

As the “brain” of the network, the control plane is one of
its most important assets. Among other things, the control
plane is responsible for sensing the status of the network (e.g.,
which links are up or which links are overloaded), computing
the best paths along which to guide traffic, and updating
the underlying data plane accordingly. To do so, the control
plane is composed of many dynamic and interacting processes
(e.g., routing, management and accounting protocols) whose
operation must scale to large networks. In contrast, the data
plane is “only” responsible for forwarding traffic according
to the control plane decisions, albeit as fast as possible.
These fundamental differences lead to very different de-
sign philosophies. Given the relative simplicity of the data
plane and the “need for speed”, it is typically entirely imple-
mented in hardware. That said, software-based implementa-
tions of data planes are also commonly found (e.g., Open-
VSwitch [30]) together with hybrid software-hardware ones
(e.g., CacheFlow [20]). In short, data plane implementations
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cover the entire implementation spectrum, from pure software
to pure hardware. In contrast, there is much less diversity in
control plane implementations. The sheer complexity of the
control plane tasks (e.g., performing routing computations)
together with the need to update them relatively frequently
(e.g., to support new protocols and features) indeed calls for
software-based implementations, with only a few key tasks
(e.g., detecting physical failures, activating backup forward-
ing state) being (sometimes) offloaded to hardware [13, 22].

Yet, we argue that a number of recent developments are
creating both the need and opportunity for rethinking basic
design and implementation choices of network control planes.

Need There is a growing need for faster, more scalable, and
yet more powerful control planes. Nowadays, even beefed-
up and highly-optimized software control planes can only
process thousands of (BGP) control plane messages per sec-
ond [23], and can take minutes to converge upon large fail-
ures [17, 36]. Parallelizing only marginally helps: for instance,
the BGP specification [31] mandates to lock all Adj-RIBs-In
before proceeding with the best-path calculation, essentially
preventing the parallel execution of best path computations.
A concrete risk is that convergence time will keep increasing
with the network size and the number of Internet destinations.
At the same time, recent research has repeatedly shown the
performance benefits of controlling networks with extremely
tight control loops, among others to handle congestion (e.g.,
[7.21,29)).

Opportunity Modern reprogrammable switches (e.g., [1]) can
perform complex stateful computations on billions of packets
per second [19]. Running (pieces of) the control plane at such
speeds would lead to almost “instantaneous” convergence,
leaving the propagation time of the messages as the primary
bottleneck. Besides speed, offloading control plane tasks to
hardware would also help by making them traffic-aware. For
instance, it enables to update forwarding entries consistently
with real-time traffic volumes rather than in a random order.

Research questions Given the opportunity and the need, we
argue that it is time to revisit the control plane’s design and im-
plementation by considering the problem of offloading parts
of it to hardware. This redesign opens the door to multiple re-
search questions including: Which pieces of the control plane
should be offloaded? What are the benefits? and How can
we overcome the fundamental hardware limitations? These
fundamental limitations come mainly from the very limited
instruction set (e.g., no floating point) and the memory avail-
able (i.e., around tens of megabytes [19]) of programmable
network hardware. We start to answer these questions in this
paper and make two contributions.
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ABSTRACT

Centralizing routing decisions offers tremendous flexi-
bility, but sacrifices the robustness of distributed proto-
cols. In this paper, we present Fibbing, an architecture
that achieves both flexibility and robustness through
central control over distributed routing. Fibbing intro-
duces fake nodes and links into an underlying link-state
routing protocol, so that routers compute their own for-
warding tables based on the augmented topology. Fib-
bing is expressive, and readily supports flexible load bal-
ancing, traffic engineering, and backup routes. Based
on high-level forwarding requirements, the Fibbing con-
troller computes a compact augmented topology and
injects the fake components through standard routing-
protocol messages. Fibbing works with any unmodified
commercial routers speaking OSPF. Our experiments
also show that it can scale to large networks with many
forwarding requirements, introduces minimal overhead,
and quickly reacts to network and controller failures.

CCS Concepts

eNetworks — Routing protocols; Network architec-
tures; Programmable networks; Network management;

Keywords
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1. INTRODUCTION

Consider a large IP network with hundreds of devices,
including the components shown in Fig. [la. A set of
IP addresses (D;) see a sudden surge of traffic, from
multiple entry points (A, D, and E), that congests a
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part of the network. As a network operator, you suspect
a denial-of-service attack (DoS), but cannot know for
sure without inspecting the traffic as it could also be a
flash crowd. Your goal is therefore to: (i) isolate the
flows destined to these IP add , (ii) direct them
to a ibber connected between B and C, in order to
“clean” them if needed, and (iii) reduce congestion by
load-balancing the traffic on unused links, like (B, E).

%
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(a) Initial topology

(b) Augmented topology

Figure 1: Fibbing can steer the initial forward-
ing paths (see (a)) for D; through a scrubber by
adding fake nodes and links (see (b)).

Performing this routine task is very difficult in tra-
ditional networks. First, since the middlebox and the
destinations are not adjacent to each other, the con-
figuration of multiple devices needs to change. Also,
since intra-domain routing is typically based on short-
est path algorithms, modifying the routing configura-
tion is likely to impact many other flows not involved
in the attack. In Fig. la, any attempt to reroute flows
to Dy would also reroute flows to Dy since they home
to the same router. Advertising Dy from the middlebox
would attract the right traffic, but would not necessar-
ily alleviate the congestion, because all D; traffic would
traverse (and congest) path (A, D, E, B), leaving (A, B)
unused. Well-known Traffic-Engineering (TE) protocols
( MPLS RSVP-TE [1]) could help. Unfortunate
since Dy traffic enters the network from multiple points,
many tunnels (three, on A, D, and E, in our tiny ex-
ample) would need to be configured and signaled. This
increases both control-plane and data-plane overhead.

Software Defined Networking (SDN) could easily solve
the problem as it enables centralized and direct con-
trol of the forwarding behavior. However, moving away
from distributed routinge protocols comes at a cost. In-

Abstract

Network operators often need to adapt the configuration
of a network in order to comply with changing rout-
ing policies. Evolving existing configurations, however,
is a complex task as local changes can have unforeseen
global effects. Not surprisingly, this often leads to mis-
takes that result in network downtimes.

We present NetComplete, a system that assists oper-
ators in modifying existing network-wide configurations
to comply with new routing policies. NetComplete takes
as input configurations with “holes” that identify the
parameters to be completed and “autocompletes” these
with concrete values. The use of a partial configuration
addresses two important challenges inherent to existing
synthesis solutions: (i) it allows the operators to precisely
control how configurations should be changed; and (ii) it
allows the synthesizer to leverage the existing configura-
tions to gain performance. To scale, NetComplete relies
on powerful techniques such as counter-example guided
inductive synthesis (for link-state protocols) and partial
evaluation (for path-vector protocols).

We implemented NetComplete and showed that it can
autocomplete configurations using static routes, OSPF,
and BGP. Our implementation also scales to realistic net-
works and complex routing policies. Among others, it is
able to synthesize configurations for networks with up to
200 routers within few minutes.

1 Introduction

In a world where more and more critical services con-
verge on IP, even slight network downtimes can cause
large financial or reputational losses. This strategic im-
portance contrasts with the fact that managing a net-
work is surprisingly hard and brittle. Out of high-level
requirements, network operators have to come up (often
manually) with low-level configurations specifying the
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tributed protocols. A single misconfiguration can bring
down the network infrastructure, or worse, a piece of
the Internet in case of BGP-related misconfigurations.
Every few months downtimes involving major players
such as NYSE [1], Google [2], Facebook [3], or United
Airlines [4] make the news. Actually, studies show that
human-induced misconfigurations, not physical failures,
explain the majority of downtimes [5].

To address these challenges, recently there has been
an increased interest in configuration verification [6, 7,
8,9, 10, 11, 12, 13] and synthesis [14, 15, 16, 17, 18,
19, 20]. Configuration synthesis in particular promises
to alleviate most of the operator’s burdens by deriving
correct configurations out of high-level objectives.

Challenges in network synthesis While promising, net-
work operators can still be reluctant to use existing syn-
thesis systems for at least three reasons: (i) interpretabil-
ity: the synthesizer can produce configurations that differ
wildly from manually provided ones, making it hard to
understand what the resulting configuration does. More-
over, small policy changes can cause the synthesized
configuration (or configuration templates in the case of
PropaneAT [16]) to change radically; (ii) protocol cov-
erage: existing systems [15, 16] are restricted to produc-
ing BGP-only configurations, while most networks rely
on multiple routing protocols (e.g., to leverage OSPF’s
fast-convergence capabilities); and (iii) scalability: re-
cent synthesizers such as SyNET [20] handle multiple
protocols but do not scale to realistic networks.

NetComplete We present a system, NetComplete,
which addresses the above challenges with partial syn-
thesis. Rather than synthesizing a new configuration
from scratch, NetComplete allows network operators
to express their intent by sketching parts of the ex-
isting configuration that should remain intact (captur-
ing a high-level insight) and “holes” represented with

symbolic values which the synthesizer should instanti-
ata (oo OCPE weichte ROP imvmert /oavamet melimiac)
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Centrally control distributed routing protocols

Designing central, scalable and robust control is hard

Distributed protocols are still ruling over networks



control network-wide forwarding state
distributed protocols
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What are our knobs?



The network-wide forwarding state depends on
three parameters



Network-wide
Forwarding state



Topology Network-wide Network Network-wide
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Configuration Environment Forwarding state



Topology
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links & nodes status
routing announcements



Out of these three parameters,
two can be controlled

Tepology Network-wide Network Network-wide
-+ . . -+ . — .
Configuration Environment Forwarding state

routing announcements



Given a forwarding state we want to program,
we therefore have two ways to provision it



Given a network-wide forwarding state

to provision, one can synthesize

the routing messages shown to the routers

the configurations run by the routers



Given a network-wide forwarding state

output to provision, one can synthesize

inputs the routing messages shown to the routers

functions the configurations run by the routers



Controlling distributed computation
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Controlling distributed computation

Topology Network-wide
Configuration Environment Forwarding state

Part 1



Consider this network where a source
sends traffic to 2 destinations

source destination

traffic flow



As congestion appears, the operator wants
to shift away one flow from (C,D)

initial desired




Moving only one flow is impossible though
as both destinations are connected to D
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Let’s lie to the routers
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by injecting
fake nodes, links and destinations
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Lies are propagated network-wide

by the routing protocol

Fibbing

controller




All routers compute their shortest-paths
on the augmented topology



C prefers the virtual node (cost 2)
to reach the blue destination...

Fibbing

controller




As the virtual node does not really exist,
actual traffic is physically sent to A

Fibbing

controller




Synthesizing routing messages is powerful



Theorem Fibbing can program

any set of non-contradictory paths



Theorem Fibbing can program

any set of non-contradictory paths



Theorem Fibbing can program

any set of non-contradictory paths

——— any path is loop-free

(e.g., [s1, a, b, a, d] is not possible)

—— paths are consistent

(e.g. [s1, a, b, d] and
[s2, b, a, d] are inconsistent)



Synthesizing routing messages is fast
and works in practice

We developed efficient algorithms

polynomial in the # of requirements

Compute and minimize topologies in ms

independently of the size of the network

We tested them against real routers

works on both Cisco and Juniper



Lots of lies are not required,
some of them are redundant






destination







original shortest-path
“down and to the right”



desired shortest-path
“up and to the right”



Our naive algorithm would
create 5 lies—one per router

|
M
Ve

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q



A single lie is sufficient (and necessary)



Merger iteratively tries to merge lies
produced by the Naive algorithm



Merger iteratively tries to merge lies
produced by the Naive algorithm
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Merger iteratively tries to merge lies
produced by the Naive algorithm
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Merger iteratively tries to merge lies
produced by the Naive algorithm
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Merger iteratively tries to merge lies
produced by the Naive algorithm



Merger iteratively tries to merge lies
produced by the Naive algorithm
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Merger iteratively tries to merge lies
produced by the Naive algorithm

'
Vo
1 7100
A 2 J S——
C D E



Merger iteratively tries to merge lies
produced by the Naive algorithm



computation
time (s)
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Fibbing computes routing messages to inject in ~Tms

computation 10 —
time (s)

0.1 —
median
0.001 - M= Ao .
I | | | I
0 20 40 60 80

% of nodes changing next-hop



Fibbing minimizes the # of routing messages
to inject in ~100ms

computation 10 —
time (s)

optimized (median)

. ’WMW

median
0.001 - M - w ‘
I I I I I
0 20 40 60 80

% of nodes changing next-hop



Fibbing is fully implemented
and works with real routers



Existing routers can easily sustain
Fibbing-induced load, even with huge topologies

# fake router
nodes memory (MB)
1000 0.7
5000 6.8
10 000 14.5
50 000 76.0

100 000 153 DRAM is cheap



Because it is entirely distributed,

programming forwarding entries is fast

# fake
nodes

1000

5 000
10 000
50 000
100 000

installation
time (s)

0.9
4.5
8.9
44.7
89.50

894.50 ps/entry



Fibbing is limited though, among others
by the configurations running on the routers

Works with a single protocol family

Dijkstra-based shortest-path routing

Can lead to loads of messages

if the configuration is not adapted

Suffers from reliability issues

need to remove the lies upon failures



Controlling distributed computation

Topology Network-wide
Configuration Environment Forwarding state

Part 2



NetComplete: Practical Network-Wide
Configuration Synthesis with Autocompletion
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Fewer heart attack patients die when top cardiologists
are away at conferences, study finds
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Curious if the Internet is also better during IETF/NANOG/RIPE...

Fewer heart attack patients die when top cardiologists
are away at conferences, study finds

Heart attack patients are more likely to survive when top cardiologists are not in
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Yes.



The Internet seems to be better off during week-ends...

Monday —

Tuesday —

Wednesday -

Thursday —

Friday =

Saturday -

Sunday -

0 5 10 15 20

% of route leaks



This is a far too common story...

CloudFlare apologizes for Telia screwing you

News -« Amazon’s massive AWS outage was cat gver
] o - Y One incorrect command and the whole internet suffers.
Configuration Error’ oo oo Unhappy about massive outage

for AWS Outage I e

By David Ramel 08/12/2015

A "configuration error" caused this week's -

Widespread internet outages
affected Comcast, Spectrum,
Verizon and AT&T customers

BY: CNN
POSTED: 1:45 PM, Nov 6, 2017
UPDATED: 7:35 PM, Nov 6, 2017

éloud ACCeS)

L lafans i AN

Networks

Level3 switch config blunder blamed for US-
wide VoIP blackout

-

Network dropped calls because it was told to

7

_qav Amazon today blamed human error for the the big AWS outage that took down a b
internet sites for several hours on Tuesday afternoon.

The summer of network misconfigurations

by Joanne Godfrey on August 11, 2016 in Application Connectivity
Management, Firewall Change Management, Information Securit \
Management and Vulnerabilities, Security Policy Management

AL Jin ECUIRICY ¥ Twoot SN €3 Share 6 Jl ik Lik
el

People around the U.S. experienced some internet downtime on Monday.
The outage was brief and service has been restored.

5 Oct 2016 at 11:33, Shaun Nichols (5



Why do we have so many misconfigurations?



Given

an existing network behavior
induced by a low-level configuration C



and

an existing network behavior
induced by a low-level configuration C

a desired network behavior



and

an existing network behavior a desired network behavior
induced by a low-level configuration C

Adapt C so that the network follows the new behavior



and

an existing network behavior a desired network behavior
induced by a low-level configuration C

Adapt C so that the network follows the new behavior



Nowadays these adaptations are still mostly done manually,
which is error-prone and time-consuming

|
Cisco 10S ip multicast-routing router bgp 700
! neighbor 125.1.17.1 remote-as 100
interface Loopback® !
ip address 120.1.7.7 255.255.255.255 address-family ipv4
ip ospf 1 area © redistribute ospf 1 match internal
! external 1 external 2
! neighbor 125.1.17.1 activate
interface Ethernet0/0 '

no 1ip address address-family ipv4 multicast

! network 125.1.79.0 mask 255.255.255.0
interface Ethernet0/0.17 redistribute ospf 1 match internal
encapsulation dotlQ 17 external 1 external 2

ip address 125.1.17.7 255.255.255.0 neighbor 125.1.17.1 activate

ip pim bsr-border !
ip pim sparse-mode

!

!

router ospf 1

router-id 120.1.7.7

redistribute bgp 700 subnets
!



Nowadays these adaptations are still mostly done manually,
which is error-prone and time-consuming

redistribute bgp 700 subnets Anything else than 700 creates blackholes



Configuration synthesis addresses this problem by deriving

low-level configurations from high-level requirements



Configuration synthesis addresses this problem by deriving

low-level configurations from high-level requirements

Inputs Outputs

|
ip mu:

Network model

"router ospf 1
router-id 120.1.7.7

inter-i . .
no ilinter1lred15tP1bUte bgp 700 subnets
! no irr.‘outer‘ bgp 700
I - inter- |
PhYSICal tOpOIOgy SynthESIZEI’ — encaj interﬂ neighbor 125.1.17.1 remote-as 100
: |
ip a -
ip p: EBC:E address-family ipv4
ip p! ip p: redistribute ospf 1 match internal external 1 external 2
! ip p. neighbor 125.1.17.1 activate
| PP
router address-family ipv4 multicast

High-lEVEI FEQUirementS route Network 125.1.79.@ mask 255.255.255.0
redis redistribute ospf 1 match internal external 1 external 2
" neighbor 125.1.17.1 activate
!



Configuration synthesis:

a booming research area!

Out of high-level requirements,
automatically derive...

Genesis [POPL’17] forwarding rules

Propane [SIGCOMM’16] BGP configurations
PropaneAT [PLDI’17]

SYNET [CAV’17] OSPF + BGP configurations
Zeppelin [SIGMETRICS’1 8]



Synthesizing configuration is great, but comes with
challenges preventing a wide adoption



Existing synthesizers...



can produce configurations that
interpretability widely differ from humanly-generated ones



can produce widely different configurations
continuity given slightly different requirements



cannot flexibly adapt to operational requirements,
deployability requiring configuration heterogeneity



A key issue is that synthesizers do not provide operators
with a fine-grained control over the synthesized configurations



Introducing...

NetComplete



NetComplete allows network operators to flexibly express
their intents through configuration sketches

A configuration with “holes”



interface TenGigabitEtherneti/1/1 route-map imp-pl permit 19

1p address ? ?

ip ospf cost 16 < ? < 106
route-map exp-pl 10

router ospf 100 match community C2

> route-map exp-p2 20

match community C1

router bgp 6500

neighbor AS200 import route-map imp-pl
neighbor AS200 export route-map exp-pl

ip community-1list C1 permit ~?

ip community-1list C2 permit ~?



interface TenGigabitEthernetl/1/1
1p address ? ?
ip ospf cost 16 < ? < 106

router ospf 100 Holes can identify

5 specific attributes such as:

IP addresses

router bgp 6500 link costs

neighbor AS200 import route-map imp-pl BGP local preferences
neighbor AS200 export route-map exp-pl

ip community-1list C1 permit ~?

ip community-1list C2 permit ~?



route-map imp-pl permit 10
?

router ospf 100
P

Holes can also identify
entire pieces of the configuration



NetComplete “autocompletes” the holes such that
the output configuration complies with the requirements



interface TenGigabitEtherneti/1/1 route-map imp-pl permit 19

1p address ? ?

ip ospf cost 16 < ? < 106
route-map exp-pl 10

router ospf 100 match community C2

> route-map exp-p2 20

match community C1

router bgp 6500

neighbor AS200 import route-map imp-pl
neighbor AS200 export route-map exp-pl

ip community-1list C1 permit ~?

ip community-1list C2 permit ~?



interface TenGigabitEthernetl/1/1
ip address 10.0.0.1 255.255.255.254
ip ospf cost 15

router ospf 100
network 10.0.0.1 0.0.0.1 area 0.0.0.0

router bgp 6500

neighbor AS200 import route-map imp-pl
neighbor AS200 export route-map exp-pl

ip community-1list C1l permit 65600:1
ip community-1ist C2 permit 65600:2

route-map imp-pl permit 10
set community 6500:1
set local-pref 50
route-map exp-pl permit 10
match community C2
route-map exp-p2 deny 20

match community C1



NetComplete reduces the autocompletion problem
to a constraint satisfaction problem



protocol semantics

Encode high-level requirements logical formula

partial configurations



protocol semantics

Encode high-level requirements logical formula

partial configurations

Then Use a solver to find an assignment for the undefined
configuration variables s.t. the formula evaluates to True



Inputs NetComplete Outputs

O

N O Links/adjacencies/
Topolo O—0O—C%e
P 9y \O/ o static routes hetwork-wide
. configurations
Regs @Oio l .
Sketch : BGP =
=5 l ——
OSPF

L /3 solver



Inputs NetComplete Outputs

O

Topology O<O>O§f§> Links/adjacencies/ |
O static routes hetwork-wide
N o configurations
Reqs @O\o P STATIC l
Sketch ? BGP "

PBGP + PSTATIC l

OSPF

PospPFt+ PBGP + DSTATIC |
/3 solver



Main challenge:
Scalability

Insight #1 Insight #2

network-specific

o partial evaluation
heuristics

search space navigation search space reduction



NetComplete: Practical Network-Wide
Configuration Synthesis with Autocompletion

="

BGP synthesis

optimized encoding

OSPF synthesis

counter-examples-based

Fvaluation

flexible, yet scalable



But first...
"How to configure routing protocols” 101

inter-domain intra-domain
routing routing

BGP OSPF



But first...
"How to configure routing protocols” 101

inter-domain intra-domain
routing routing

BGP



Internet



Inter



Inter

|

A network of networks



Inter

|

Border Gateway Protocol (BGP)



The Internet is a network of networks,
referred to as Autonomous Systems (AS)

AS30

$

SWisscom

AS40




BGP is the routing protocol
"glueing” the Internet together

BGP sessions

Deutsche

Telekom "L




Using BGP, ASes exchange information about
the IP prefixes they can reach, directly or indirectly

/S

g

129.132.0.0/16
ETH/UNIZH Camp Net



BGP routes carry complete path information
instead of distance

AS30
AS20

AST0 '

\ Al
| 129.132.0.0/16
+ | Path:40
' AS40
AS50 /
2913200016
Path:40
129.132.0.0/16

ETH/UNIZH Camp Net



Each AS appends itself to the path
when it propagates announcements

AS30
AS20
AS10 |
' L AS40
AS50 , <
- s
felekom Path:1040
129.132.0.0/16

ETH/UNIZH Camp Net



AS30

AS40

Deutsche r
Telekom

129.132.0.0/16
ETH/UNIZH Camp Net



Network operators need to configure each router
to adapt how it selects and exports BGP advertisements



Network operators need to configure each router
to adapt how it selects and exports BGP advertisements

Selection

out of all paths a router receives:

along which one should it direct traffic?



Network operators need to configure each router
to adapt how it selects and exports BGP advertisements

Selection

out of all paths a router receives:

along which one should it direct traffic?

control where traffic is going



Network operators need to configure each router
to adapt how it selects and exports BGP advertisements

Selection Export
out of all paths a router receives: for each selected path:
along which one should it direct traffic? to which neighbors propagate it?

control where traffic is going



Network operators need to configure each router
to adapt how it selects and exports BGP advertisements

Selection Export
out of all paths a router receives: for each selected path:
along which one should it direct traffic? to which neighbors propagate it?

control where traffic is going control where traffic is coming from



BGP sessions

Neighbori —>»

Neighbor, —>»

4 )
Adj-RIB-In Adj-RIB-Out
4
Input filters Output filters
Attribut Al Attribut
ribute ribute
Manipulation aCCEptable Manipulation
routes
Input filters \_ Output filters
Attribute Attribute

Manipulation

BGP sessions

—> Neighbor;

l

[BGP Decision Process}

Manipulation

—> Neighbor:

l Loc-Rib

Neighbor, —>»

IP packets —

—> Neighborn

Input filters Output filters
4 )
Manipulation Manipulation
to each
destination
G J
\_ Y,
forwarding entries
4 )
IP forwarding table
\_ J

—> |P packets



fixed, well-known

[BGP Decision ProcessJ




Prefer routes...

higher preference

shorter path length

learned externally rather than internally

egress point is the closest

smaller egress IP address



Input filters

| Attribute
Manipulation

Output filters

Attribute
Manipulation

Input filters

| Attribute
Manipulation

Output filters

Attribute
Manipulation

Input filters

| Attribute
Manipulation

Output filters

Attribute
Manipulation




Network operators adapt how a router selects and exports
BGP advertisements by configuring inbound/outbound filters

commonly known as BGP policies



Network operators adapt how a router selects and exports
BGP advertisements by configuring inbound/outbound filters

BGP filter

f:Adv — (Adv U 1)



Network operators adapt how a router selects and exports
BGP advertisements by configuring inbound/outbound filters

BGP filter predicate prefix from Google

path matches a regular expression
f:Adv — (Adv U 1)
label contains X

path received from AS X

action set preference X
attach/strip label Y
drop






Google

secondary path primary path

for Google traffic

ETH







Edge #B configuration

router bgp 10

neighbor AS50 in filter in dt
neighbor AS50 out filter out dt

set preference 100
(D v’
N\




Edge #A configuration

router bgp 10

neighbor AS30 in filter in swiss

neighbor AS30 out filter out swiss

route-map 1n sSwiss

$

set preference 50 swisscom




Swisscom shouldn't reach
DT via ETH (and vice-versa)



Edge #B configuration

router bgp 10

neighbor AS50 in filter in dt
neighbor AS50 out filter out dt

route-map 1in dt
set preference 100
set label PROVIDER

route-map out dt
if(label PROVIDER): drop;

else allow;




Edge #A configuration

router bgp 10

neighbor AS30 in filter in swiss

neighbor AS30 out filter out swiss

route-map 1n sSwiss

$

set preference 50 swisscom

set label PROVIDER

route-map out swiss

if(label PROVIDER): drop;
else allow;




But first...
"How to configure routing protocols” 101

inter-domain intra-domain
routing routing

OSPF



In OSPF, routers build a precise map of the network
by flooding its local view to everyone

Each router keeps track of its incident links and cost
as well as whether they are up or down

Each router broadcasts its own link state
to give every router a complete view of the graph

Routers run Dijkstra on the corresponding graph
to compute their shortest-paths and forwarding tables



OSPF configuration mainly consists in figuring out link weights
inducing an intended network-wide forwarding state



intended forwarding state




intended forwarding state — OSPF configuration
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NetComplete: Practical Network-Wide
Configuration Synthesis with Autocompletion

_— ? ________

BGP synthesis

OSPF synthesis

counter-examples-based

Fvaluation

flexible, yet scalable



NetComplete autocompletes router-level BGP policies by
encoding the desired BGP behavior as a logical formula



M Reqs BGPprotocol Policies



M Reqs BGPprotocol Policies

how should the network forward traffic



M Reqs BGPprotocol Policies

R .BGPseIect(A] ,AZ) N
R] .BGPseIect(AZ,A3) AN



how do BGP routers select routes

M Reqs BGPprotocol Policies



BGPsc1ect(X,Y) & (X.LocalPref > Y.LocalPref) v ..

M Reqs BGPprotocol Policies



M Reqs BGPprotocol Policies

how routes should be modified



M Reqs BGPprotocol Policies

R1.SetLocalPref(Al) = VarX
R1.SetLocalPref(A2) = 200



Solving this logical formula consists in assigning
each symbolic variable with a concrete value

BGPse1ect (X,Y) & (X.LocalPref > Y.LocalPref) v ..

M Reqs BGPprotocol Policies

R1.BGPselect(A1,A2) A R1.SetLocalPref(A1) = VarX
R1.BGPselect(A2,A3) A ... R1.SetLocalPref(A2) = 200



BGPse1ect (X,Y) & (X.LocalPref > Y.LocalPref) v ..

M Reqs BGPprotocol Policies

R1.BGPselect(A1,A2) A R1.SetLocalPref(Al) = VarX
R1.BGPselect(A2,A3) A ... R1.SetLocalPref(A2) = 200



BGPse1ect (X,Y) & (X.LocalPref > Y.LocalPref) v ..

VarX =250 — M ReqS BGPprotoco]_ POliCiES

R1.BGPselect(A1,A2) A R1.SetLocalPref(Al) = VarX
R1.BGPselect(A2,A3) A ... R1.SetLocalPref(A2) = 200



Naive encodings lead to complex constraints
that cannot be solved in a reasonable time



Naive encodings lead to complex constraints
that cannot be solved in a reasonable time

M — ReqS N BGPprotoco]_ N POliCiES

| |

challenges BGP x OSPF huge search space



Naive encodings lead to complex constraints
that cannot be solved in a reasonable time

M — ReqS N BGPprotocgl N POliCiES

| |

solutions iterative synthesis partial evaluation



Naive encodings lead to complex constraints
that cannot be solved in a reasonable time

M — ReqS N BGPprotocgl N POliCiES

| |

solutions iterative synthesis partial evaluation



NetComplete encodes reduced policies by relying
on the requirements and the sketches



NetComplete encodes reduced policies by relying
on the requirements and the sketches

Step 1 Capture how announcements should propagate

using the requirements

Output



NetComplete encodes reduced policies by relying
on the requirements and the sketches

Step 2 Combine the graph with constraints imposed by sketches

via symbolic execution

Output



NetComplete relies on the requirements to figure out
where BGP announcements should (not) propagate



NetComplete relies on the requirements to figure out
where BGP announcements should (nhot) propagate

Requirement

Only customers should be able to

send traffic to Provider #2




NetComplete relies on the requirements to figure out
where BGP announcements should (nhot) propagate

Requirement

Only customers should be able to

send traffic to Provider #2




NetComplete computes one BGP propagation graph
per equivalence class

blocked T

Provider 1 Provider 2 o
\\ ;1‘

blocked




NetComplete concretizes symbolic announcements

by propagating them through the graph and sketches

T

For all ann in Announcements:

ann.communities = [External, Varl]

ann.local pref = 100

Encode BGP policies
as SMT formulas

permitted

communities

:

|

/7‘ 4 B

—/ ew
4
y
)
v
4
4
4

True
local pref = 100

local pref
communities

permitted = True | |nject symbolic

= ? announcement
= ?

[External, Varl]

Result is a partially
evaluated formula



Naive encodings lead to complex constraints
that cannot be solved in a reasonable time

M — ReqS N BGPprotocgl N POliCiES

| |

solutions iterative synthesis partial evaluation



M Reqs BGPprotocol Policies



BGP Decision Process

] Higher local preference

Shorter AS Path
Lowest Origin
Lowest MED
eBGP over iBGP

S v A~ WN

Lower OSPF weight



BGP Decision Process

] Higher local preference

Shorter AS Path
Lowest Origin
Lowest MED
eBGP over iBGP

S vl A~ WN

Lower OSPF weight——

If we hit this step,
it means that the BGP decision depends on OSPF



NetComplete first tries to find a BGP-only assignment,
one in which the BGP behavior does not depend on OSPF



NetComplete first searches for a solution using solely Step 1 to 5

] Higher local preference

Shorter AS Path
Lowest Origin PrefNoOSPF(X,Y)
Lowest MED

eBGP over iBGP
Lower OSPF weight PrefOSPF (X,Y)<-PrefNoOSPF(X,Y)

S v A~ WN



NetComplete first searches for a solution using solely Step 1 to 5

BGPse1ect (X, Y)<PrefNoOSPF (X,Y)

M ReqS BGPproth()]_ POliCiES



UNSAT ! BGPse1ect (X, Y)<PrefNoOSPF (X,Y)

M — ReqS N BGPprotho]_ N POliCiES




If NetComplete cannot find an assignment,
it then allows the BGP decisions to depend on OSPF

ReqS BGPprotocol POliCieS



selec ) )

— ReqS N BGPprotho]_ N POliCiES




BGPselect (X,Y)<PrefOSPF (X,Y) — generate OSPF-based constraints

— ReqS N BGPprotho]_ N POliCiES



NetComplete: Practical Network-Wide
Configuration Synthesis with Autocompletion
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BGP synthesis

optimized encoding

OSPF synthesis

Fvaluation

flexible, yet scalable



As for BGP, Netcomplete phrases the problem of finding weights
as a constraint satisfaction problem



Consider this initial configuration in which
(A,C) traffic is forwarded along the direct link

D

150 150




For performance reasons,
the operators want to enable load-balancing




What should be the weights for this to happen?




iInput requirements




input requirements synthesis procedure




input requirements synthesis procedure

VX € Paths(A,C)\Reqgs

|

Cost(A—C) = Cost(A—=D—C) < Cost(X)




input requirements synthesis procedure
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input requirements synthesis procedure

VX € Paths(A,C)\Reqgs

|

Cost(A—C) = Cost(A—=D—C) < Cost(X)

|

Solve




input requirements synthesis procedure

B C

D D

| |
150 150

VX € Paths(A,C)\Reqgs

300 l

150 Cost(A—C) = Cost(A—-D—C) < Cost(X)
N
A D l

150

Synthesized weights Solve



This was easy, but...
it does not scale

VX € Paths(A,C)\Reqgs

|

Cost(A—C) = Cost(A—=D—C) < Cost(X)

|

Solve



There can be an exponential number of paths
between A and C...

VX € Paths(A,C)\Reqgs

|

Cost(A—C) = Cost(A—=D—C) < Cost(X)

|

Solve



To scale, NetComplete leverages
Counter-Example Guided Inductive Synthesis (CEGIS)

An contemporary approach to synthesis where
a solution is iteratively learned from counter-examples



While enumerating all paths is hard,
computing shortest paths given weights is easy!



Instead of considering all paths between Xand Y



Consider a random subset S of them and
synthesize the weights considering S only



Consider a random subset S of them and
synthesize the weights considering S only

Fast as S is small compared to all paths



Consider a random subset S of them and
synthesize the weights considering S only

but can be wrong



Consider a random subset S of them and
synthesize the weights considering S only

Check whether the weights found comply
with the requirements over all paths

return
take a counter-example
that violates the Req and add itto S



Consider a random subset S of them and
synthesize the weights considering S only

Check whether the weights found comply
with the requirements over all paths

Fast too



iInput requirements




input requirements synthesis procedure




input requirements synthesis procedure

VX € SamplePaths(A,C)\Reqs




input requirements synthesis procedure

VX € SamplePaths(A,C)\Reqs

l

Sample: { [A,B,D,C] }




input requirements synthesis procedure

VX € SamplePaths(A,C)\Reqs

|

Cost(A—C) = Cost(A—=D—C) < Cost(X)




input requirements synthesis procedure

VX € SamplePaths(A,C)\Reqs

|

Cost(A—C) = Cost(A—=D—C) < Cost(X)

|

Solve




input requirements synthesis procedure

VX € SamplePaths(A,C)\Reqs

|

Cost(A—C) = Cost(A—=D—C) < Cost(X)

|

Solve




input requirements synthesis procedure

B C

D D

| |
150 150

VX € SamplePaths(A,C)\Reqs

|

150 Cost(A—C) = Cost(A—-D—C) < Cost(X)
N
A D l

300

Synthesized weights Solve



The synthesized weights are incorrect:
cost(A - B — C]) = 250 < cost(A — C) = 300

actual path

VX € SamplePaths(A,C)\Reqgs

|

Cost(A—C) = Cost(A—=D—C) < Cost(X)

|

Solve




We simply add the counter example to
SamplePaths and repeat the procedure

VX € SamplePaths(A,C)\Reqs

l

Sample: { [A,B,D,C] } U { [A,B,C] }




The entire procedure usually converges in few iterations
making it very fast in practice
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Can NetComplete synthesize large-scale configurations?

How does the concreteness of the sketch influence the running time?



We fully implemented NetComplete
and showed its practicality

Code 10K lines of Python
SMT-LIB v2 and Z3

Input OSPF, BGP, static routes
as partial and concrete configs

Output Cisco-compatible configurations
validated with actual Cisco routers



Methodology

Topology 15 topologies from Topology Zoo

small, medium, and large

Requirement Simple, Any, ECMP, and ordered (random)
using OSPF/BGP

Sketch Built from a fully concrete configuration
from which we made a % of the variables symbolic



NetComplete synthesizes configurations
for large networks in few minutes



NetComplete synthesizes configurations
for large networks in few minutes

Network Regs. Synthesis
size type time
OSPF synthesis Large Simple 14s
time (sec) ECMP 13s
Ordered 249s

16 reqgs, 50% symbolic, 5 repet.
CEGIS enabled



Without CEGIS, OSPF synthesis is
>100x slower and often timeouts



NetComplete synthesis time increases

as the sketch becomes more symbolic
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NetComplete synthesis time increases

as the sketch becomes more symbolic

OSPF synthesis
time (sec)
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NetComplete: Practical Network-Wide
Configuration Synthesis with Autocompletion

BGP synthesis

optimized encoding

OSPF synthesis

counter-examples-based

Evaluation

flexible, yet scalable



NetComplete: Practical Network-Wide
Configuration Synthesis with Autocompletion

Autocompletes configurations with “holes”
leaving the concrete parts intact

Phrases the problem as constraints satisfaction
scales using network-specific heuristics & partial evaluation

Scales to realistic network size
synthesizes configurations for large network in minutes
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Controlling distributed computation
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Abstract

We present Blink, a data-driven system that leverages TCP-
induced signals to detect failures directly in the data plane.
The key intuition behind Blink is that a TCP flow exhibits a
predictable behavior upon disruption: retransmitting the same
packet over and over, at epochs exponentially spaced in time.
When compounded over multiple flows, this behavior creates
a strong and characteristic failure signal. Blink efficiently
analyzes TCP flows to: (i) select which ones to track; (ii)
reliably and quickly detect major traffic disruptions; and (iii)
recover connectivity—all this, completely in the data plane.

‘We present an implementation of Blink in P4 together with
an extensive evaluation on real and synthetic traffic traces.
Our results indicate that Blink: (i) achieves sub-second rerout-
ing for large fractions of Internet traffic; and (ii) prevents
unnecessary traffic shifts even in the presence of noise. We
further show the feasibility of Blink by running it on an actual
Tofino switch.

1 Introduction

Thanks to widely deployed fast-convergence frameworks
such as IPFFR [35], Loop-Free Alternate [7] or MPLS Fast
Reroute [29], sub-second and ISP-wide convergence upon link
or node failure is now the norm [6, 15]. At a high-level, these
fast-convergence frameworks share two common ingredients:
(i) fast detection by leveraging hardware-generated signals
(e.g., Loss-of-Light or unanswered hardware keepalive [23]);
and (ii) quick activation by promptly activating pre-computed
backup state upon failure instead of recomputing the paths
on-the-fly.

Problem: Convergence upon remote failures is still slow.
These frameworks help ISPs to retrieve connectivity upon
internal (or peering) failures but are of no use when it comes
to restoring connectivity upon remote failures. Unfortunately,
remote failures are both frequent and slow to repair, with aver-
age convergence times above 30's [19, 24, 28]. These failures
indeed trigger a control-plane-driven convergence through
the propacation of BGP updates on a per-router and per-prefix

1.0
0.8
0.6 {
0.4
0.2

CDF over the BGP peers

0.0
0 100 200 300 400 500 600
Time difference (s) between the
outage and the first and last withdrawal

Figure 1: It can take minutes to receive the first BGP update
following data-plane failures during which traffic is lost.

basis. To reduce convergence time, SWIFT [19] predicts the
entire extent of a remote failure from a few received BGP
updates, leveraging the fact that such updates are correlated
(e.g., they share the same AS-PATH). The fundamental prob-
lem with SWIFT though, is that it can take O(minutes) for
the first BGP update to propagate after the corresponding
data-plane failure.

We illustrate this problem through a case study, by mea-
suring the time the first BGP updates took to propagate after
the Time Warner Cable (TWC) networks were affected by an
outage on August 27 2014 [1]. We consider as outage time 7o,
the time at which traffic originated by TWC ASes observed
at a large darknet [10] suddenly dropped to zero. We then col-
lect, for each of the routers peering with RouteViews [27] and
RIPE RIS [2], the timestamp 7, of the first BGP withdrawal
they received from the same TWC ASes. Figure | depicts
the CDFs of (1] —ty) over all the BGP peers (100+ routers,
in most cases) that received withdrawals for 7 TWC ASes:
more than half of the peers took more than a minute to receive
the first update (continuous lines). In addition, the CDFs of
the time difference between the outage and the last prefix
withdrawal for each AS, show that BGP convergence can be
as slow as several minutes (dashed lines).
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ABSTRACT

One design principle of modern network architecture seems
to be set in stone: a software-based control plane drives a
hardware- or software-based data plane. We argue that it is
time to revisit this principle after the advent of programmable
switch ASICs which can run complex logic at line rate.

We explore the possibility and benefits of accelerating the
control plane by offloading some of its tasks directly to the net-
work hardware. We show that programmable data planes are
indeed powerful enough to run key control plane tasks includ-
ing: failure detection and notification, connectivity retrieval,
and even policy-based routing protocols. We implement in P4
a prototype of such a “hardware-accelerated” control plane,
and illustrate its benefits in a case study.

Despite such benefits, we acknowledge that offloading
tasks to hardware is not a silver bullet. We discuss its tradeoffs
and limitations, and outline future research directions towards
hardware-software codesign of network control planes.

1 INTRODUCTION

As the “brain” of the network, the control plane is one of
its most important assets. Among other things, the control
plane is responsible for sensing the status of the network (e.g.,
which links are up or which links are overloaded), computing
the best paths along which to guide traffic, and updating
the underlying data plane accordingly. To do so, the control
plane is composed of many dynamic and interacting processes
(e.g., routing, management and accounting protocols) whose
operation must scale to large networks. In contrast, the data
plane is “only” responsible for forwarding traffic according
to the control plane decisions, albeit as fast as possible.
These fundamental differences lead to very different de-
sign philosophies. Given the relative simplicity of the data
plane and the “need for speed”, it is typically entirely imple-
mented in hardware. That said, software-based implementa-
tions of data planes are also commonly found (e.g., Open-
VSwitch [30]) together with hybrid software-hardware ones
(e.g., CacheFlow [20]). In short, data plane implementations
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cover the entire implementation spectrum, from pure software
to pure hardware. In contrast, there is much less diversity in
control plane implementations. The sheer complexity of the
control plane tasks (e.g., performing routing computations)
together with the need to update them relatively frequently
(e.g., to support new protocols and features) indeed calls for
software-based implementations, with only a few key tasks
(e.g., detecting physical failures, activating backup forward-
ing state) being (sometimes) offloaded to hardware [13, 22].

Yet, we argue that a number of recent developments are
creating both the need and opportunity for rethinking basic
design and implementation choices of network control planes.

Need There is a growing need for faster, more scalable, and
yet more powerful control planes. Nowadays, even beefed-
up and highly-optimized software control planes can only
process thousands of (BGP) control plane messages per sec-
ond [23], and can take minutes to converge upon large fail-
ures [17, 36]. Parallelizing only marginally helps: for instance,
the BGP specification [31] mandates to lock all Adj-RIBs-In
before proceeding with the best-path calculation, essentially
preventing the parallel execution of best path computations.
A concrete risk is that convergence time will keep increasing
with the network size and the number of Internet destinations.
At the same time, recent research has repeatedly shown the
performance benefits of controlling networks with extremely
tight control loops, among others to handle congestion (e.g.,
[7.21,29)).

Opportunity Modern reprogrammable switches (e.g., [1]) can
perform complex stateful computations on billions of packets
per second [19]. Running (pieces of) the control plane at such
speeds would lead to almost “instantaneous” convergence,
leaving the propagation time of the messages as the primary
bottleneck. Besides speed, offloading control plane tasks to
hardware would also help by making them traffic-aware. For
instance, it enables to update forwarding entries consistently
with real-time traffic volumes rather than in a random order.

Research questions Given the opportunity and the need, we
argue that it is time to revisit the control plane’s design and im-
plementation by considering the problem of offloading parts
of it to hardware. This redesign opens the door to multiple re-
search questions including: Which pieces of the control plane
should be offloaded? What are the benefits? and How can
we overcome the fundamental hardware limitations? These
fundamental limitations come mainly from the very limited
instruction set (e.g., no floating point) and the memory avail-
able (i.e., around tens of megabytes [19]) of programmable
network hardware. We start to answer these questions in this
paper and make two contributions.
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Abstract

We present Blink, a data-driven system that leverages TCP-
induced signals to detect failures directly in the data plane.
The key intuition behind Blink is that a TCP flow exhibits a
predictable behavior upon disruption: retransmitting the same
packet over and over, at epochs exponentially spaced in time.
When compounded over multiple flows, this behavior creates
a strong and characteristic failure signal. Blink efficiently
analyzes TCP flows to: (i) select which ones to track; (ii)
reliably and quickly detect major traffic disruptions; and (iii)
recover connectivity—all this, completely in the data plane.

‘We present an implementation of Blink in P4 together with
an extensive evaluation on real and synthetic traffic traces.
Our results indicate that Blink: (i) achieves sub-second rerout-
ing for large fractions of Internet traffic; and (ii) prevents
unnecessary traffic shifts even in the presence of noise. We
further show the feasibility of Blink by running it on an actual
Tofino switch.

1 Introduction

Thanks to widely deployed fast-convergence frameworks
such as IPFFR [35], Loop-Free Alternate [7] or MPLS Fast
Reroute [29], sub-second and ISP-wide convergence upon link
or node failure is now the norm [6, 15]. At a high-level, these
fast-convergence frameworks share two common ingredients:
(i) fast detection by leveraging hardware-generated signals
(e.g., Loss-of-Light or unanswered hardware keepalive [23]);
and (ii) quick activation by promptly activating pre-computed
backup state upon failure instead of recomputing the paths
on-the-fly.

Problem: Convergence upon remote failures is still slow.
These frameworks help ISPs to retrieve connectivity upon
internal (or peering) failures but are of no use when it comes
to restoring connectivity upon remote failures. Unfortunately,
remote failures are both frequent and slow to repair, with aver-
age convergence times above 30's [19, 24, 28]. These failures
indeed trigger a control-plane-driven convergence through
the propacation of BGP updates on a per-router and per-prefix
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Figure 1: It can take minutes to receive the first BGP update
following data-plane failures during which traffic is lost.

basis. To reduce convergence time, SWIFT [19] predicts the
entire extent of a remote failure from a few received BGP
updates, leveraging the fact that such updates are correlated
(e.g., they share the same AS-PATH). The fundamental prob-
lem with SWIFT though, is that it can take O(minutes) for
the first BGP update to propagate after the corresponding
data-plane failure.

We illustrate this problem through a case study, by mea-
suring the time the first BGP updates took to propagate after
the Time Warner Cable (TWC) networks were affected by an
outage on August 27 2014 [1]. We consider as outage time 7o,
the time at which traffic originated by TWC ASes observed
at a large darknet [10] suddenly dropped to zero. We then col-
lect, for each of the routers peering with RouteViews [27] and
RIPE RIS [2], the timestamp 7, of the first BGP withdrawal
they received from the same TWC ASes. Figure | depicts
the CDFs of (1] —ty) over all the BGP peers (100+ routers,
in most cases) that received withdrawals for 7 TWC ASes:
more than half of the peers took more than a minute to receive
the first update (continuous lines). In addition, the CDFs of
the time difference between the outage and the last prefix
withdrawal for each AS, show that BGP convergence can be
as slow as several minutes (dashed lines).



Blink: Fast Connectivity Recovery Entirely in the Data Plane

Joint work with

Edgar Costa Molero
Maria Apostolaki
Stefano Vissicchio
Alberto Dainotti
Laurent Vanbever

ETH Zurich

ETH Zurich

University College London
CAIDA, UC San Diego

ETH Zurich

Thomas Holterbach
ETH Zurich

NSDI
26th February 2019

https://blink.ethz.ch



ilitv causes
Fire at AT&T fac;l‘lgti o Texas

widespread out o

from
Time Warner Cable COMEeS hack
\ nationwide Internet outage

abrianstelter
| " by Brian Stelter @brianste
L

(D August 27, 2014: 11:07 PMET

Major internet outage hits th

e US. - Affecting customers of
Comcast, Verizon, and AT&T

2



AS level topology
iIn 2015




AS level topology
iIn 2015

-



AS level topology

2015

N

www.opte.org



AS level topology
iIn 2015

www.opte.org



Upon local failures, connectivity can be quickly restored



Upon local failures, connectivity can be quickly restored

Fast failure detection
using e.g., hardware-generated signals

Fast traffic rerouting
using e.g., Prefix Independent Convergence
or MPLS Fast Reroute



Upon remote failures, the only way to restore connectivity is
to wait for the Internet to converge



Upon remote failures, the only way to restore connectivity is
to wait for the Internet to converge

... and the Internet converges very slowly
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BGP took minutes to converge upon the Time Warner Cable outage in 2014
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Control-plane (e.qg., BGP) based techniques typically converge slowly
upon remote outages
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Control-plane (e.qg., BGP) based techniques typically converge slowly
upon remote outages

What about using data-plane signals for fast rerouting?
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Outline

1. Why and how to use data-plane signals for fast rerouting

2. Blink infers more than 80% of the failures, often within 1s

3. Blink quickly reroutes traffic to working backup paths

4. Blink works In practice, on existing devices

17



Outline

1. Why and how to use data-plane signals for fast rerouting
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TCP flows exhibit the same behavior upon failures
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TCP flows exhibit the same behavior upon failures
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TCP flows exhibit the same behavior upon failures
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TCP flows exhibit the same behavior upon failures

source

Retransmission timeout (RTO)
= SRTT + 4«RTT_VAR

RTO: 200ms

t
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TCP flows exhibit the same behavior upon failures

source destination

Retransmission timeout (RTO) —
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TCP flows exhibit the same behavior upon failures
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When multiple flows experience the same failure
the signal is a wave of retransmissions
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When multiple flows experience the same failure
the signal is a wave of retransmissions

We simulated a failure affecting
100k flows with NS3

Same RTT distribution
than In a real trace
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When multiple flows experience the same failure
the signal is a wave of retransmissions

We simulated a failure affecting

100k flows with NS3
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than In a real trace

Number of
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When multiple flows experience the same failure
the signal is a wave of retransmissions
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When multiple flows experience the same failure
the signal is a wave of retransmissions

We simulated a failure affecting

100k flows with NS3

Same RTT distribution
than In a real trace
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When multiple flows experience the same failure
the signal is a wave of retransmissions

We simulated a failure affecting
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Same RTT distribution
than In a real trace
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When multiple flows experience the same failure
the signal is a wave of retransmissions

We simulated a failure affecting

100k flows with NS3

Same RTT distribution
than In a real trace
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When multiple flows experience the same failure
the signal is a wave of retransmissions

We simulated a failure affecting

100k flows with NS3

Same RTT distribution
than In a real trace

Number of
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Outline

2. Blink infers more than 80% of the failures, often within 1s
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To detect failures, Blink looks at TCP retransmissions
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Problem: TCP retransmissions can be unrelated to a failure (/.e., noise)
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Problem: TCP retransmissions can be unrelated to a failure (/.e., noise)
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Blink looks at consecutive packets
with the same sequence number



Blink looks at consecutive packets
with the same sequence number
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Blink monitors the number of flows experiencing
retransmissions over time using a sliding window

44



Blink monitors the number of flows experiencing

retransmissions over time using a sliding window failure

/

one "bogus" flow
number of congestions ‘

retransmissions

number of flows
experiencing
retransmissions

Time
45



Blink monitors the number of flows experiencing

retransmissions over time using a sliding window failure

/

one "bogus" flow
number of congestions ‘

retransmissions

number of flows
experiencing
retransmissions

o %9000 00 °

Time
46



Blink monitors the number of flows experiencing

retransmissions over time using a sliding window failure

/

one "bogus" flow
number of congestions ‘

retransmissions

number of flows
experiencing
retransmissions

o %o 00 %000

Time
47



Blink monitors the number of flows experiencing
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Blink monitors the number of flows experiencing
retransmissions over time using a sliding window failure
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Blink monitors the number of flows experiencing

retransmissions over time using a sliding window failure

/

one "bogus" flow
number of congestions ‘

retransmissions

number of flows
experiencing
retransmissions

0% 00000 %000 g %00 g0, O—0—0

52



Blink is intended to run in programmable switches
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Problem: those switches have very limited resources
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Blink focuses on the popular prefixes,
I.e., the ones that attract data traffic
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Blink focuses on the popular prefixes,
I.e., the ones that attract data traffic

As Internet traffic follows a Zipf-like distribution” (1k pref. account for >50%),
Blink covers the vast majority of the Internet traffic
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Blink monitors a sample of the flows
for each monitored prefix

-

TCP flows

Traffic to a destination prefix
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Blink monitors a sample of the flows
for each monitored prefix

TCP flows

Traffic to a destination prefix
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To monitor active flows, Blink evicts a flow from the sample
If it does not send a packet for a given time
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To monitor active flows, Blink evicts a flow from the sample
If it does not send a packet for a given time

and selects a new one In a
first-seen, first-selected manner
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Blink infers a failure for a prefix when the majority of
the monitored flows experience retransmissions
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Blink infers a failure for a prefix when the majority of
the monitored flows experience retransmissions

number of flows
experiencing
retransmissions
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Blink infers a failure for a prefix when the majority of
the monitored flows experience retransmissions

FAILURE
number of flows

experiencing
retransmissions

0% 00000 %000 g 000000, & o

Time
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We evaluated Blink tailure inference using 15 real traces,
13 from CAIDA, 2 from MAWI, covering a total of 15.8 hours



We evaluated Blink tailure inference using 15 real traces,
13 from CAIDA, 2 from MAWI, covering a total of 15.8 hours

We are interested In:

Accuracy: True Positive Rate vs False Positive Rate

Speed: How long does Blink take to infer failures




As we do not have ground truth, we generated synthetic traces
following the traffic characteristics extracted from the real traces
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As we do not have ground truth, we generated synthetic traces
following the traffic characteristics extracted from the real traces

Step #1 - We extracted the RTT, Packet rate, Flow duration
from the real traces

Step #2 - We used NS3 to replay these flows
and simulate a failure

Step #3 - We ran a Python-based version of Blink
on the resulting traces

6/



Blink failure inference accuracy is above 80% for 13 real traces out of 15

0.8 -
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Blink failure inference accuracy is above 80% for 13 real traces out of 15
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True Positive Rate
0.4 -
0.2 -
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1 3 5 7 9 11 13 15

Real traces ID
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Blink avoids incorrectly inferring failures when packet loss is below 49%

packet loss % 1 2 3 4 5 .- 8

False Positive Rate
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Blink avoids incorrectly inferring failures when packet loss is below 49%

packet loss % 1 2 3 4 5 ... 8 9

False Positive Rate 0 0 0 067 067 --- 1.3 2.7
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Blink infers a failure within 1s for the majority of the cases

Speed (S)

> 4 6 8 10 12 14
1 3 5 7 9 11 13 15

Real traces ID
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Blink infers a failure within 1s for the majority of the cases

6_
4 - +
Speed (s) : I + Py $
H ¥ * T +
2 |1 FRNE RN S T S RO O S
1S- %T E- :F %I__I
0 e e e e S
2 4 6 3 1 12 14

1 3 5 / 9 11 13 15

Real traces ID
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Outline

3. Blink quickly reroutes traffic to working backup paths
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Upon detection of a failure, Blink immediately activates
backup paths pre-populated by the control-plane

/9



Problem: since the rerouting is done entirely in the data-plane,
Blink cannot prevent forwarding issues
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Problem: since the rerouting is done entirely in the data-plane,
Blink cannot prevent forwarding issues

AS3 (backup #2

AS2
(backup #1) destination

BLACKHOLE

AS1 (primary)




Problem: since the rerouting is done entirely in the data-plane,
Blink cannot prevent forwarding issues

AS3 (backup #2

destination



As for failures, Blink uses data-plane signals
to pick a working backup path

81



Solution: As for failures, Blink uses data-plane signals
to pick a working backup path

The probing period

AS3 (backup #2 lasts up to 1s

32 monitored

flows

(backup #1)

...~

N

32 monitored flows +
the non-monitored ones

AS1 (primary)




Solution: As for failures, Blink uses data-plane signals
to pick a working backup path

AS3 (backup #2

destination




As for failures, Blink compares the sequence number of
consecutive packets to detect blackholes or loops
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Outline

4. Blink works In practice, on existing devices
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We ran Blink on the 15 real traces (15.8 hours)

86



We ran Blink on the 15 real traces (15.8 hours)
and it detected 6 outages, each affecting at least 42% of all the flows
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On current programmable switches, Blink supports up to 10k prefixes
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On current programmable switches, Blink supports up to 10k prefixes
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On current programmable switches, Blink supports up to 10k prefixes

Memory

6418 bits

1 pret.
Number of prefixes
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On current programmable switches, Blink supports up to 10k prefixes

8 MDb

Memory

6418 bits

1 pret. 10k pref.
Number of prefixes
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Blink works on a real Barefoot Tofino switch

RTTs in [10ms; 300mSs]

200 -
Number of packets 100
every 100ms
O | r
0 2 4 6 8
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Blink works on a real Barefoot Tofino switch

RTTs in [10ms; 300mSs]
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every 100ms
O | -
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Blink works on a real Barefoot Tofino switch

RTTs in [10ms; 300mSs]

200 -

Number of packets 100 -
every 100ms

O ]
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Blink: Fast Connectivity Recovery Entirely in the Data Plane

Infers failures from data-plane signals ”
with more than 80% accuracy, and often within 1s '

. .
Fast reroutes traffic at line rate pr— )
to working backup paths

Works on real traffic traces and on existing devices

https://blink.ethz.ch
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When multiple flows experience the same failure
the signal is a wave of retransmissions

We simulated a failure affecting
100k flows with NS3

Failure

Same RTT distribution Nl:mber of
than in a real trace retransmissions

100




When multiple flows experience the same failure
the signal is a wave of retransmissions

/70K

60K -
50K -
40K -

Failure

Failure

30K -
20K -

Number of retransmissions

2 3 4 5 @6 7 0 1 2 3 4 5 6 7
Time (s) Time (S)

o -
—h
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Blink tailure inference accuracy is close to a best case scenario,
and is above 80% for 13 real traces out of 15

True Positive Rate

1.0 -

2 4 6 8 10 12 14
13 5 7 9 11 13 15

0.8

0.6

0.4

0.2

0.0

Trace ID
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"best case’, I.e.,
no sampling but
threshold still 32
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Blink infers a failure within 1s for the majority of the cases

I . "best case', I.e.,
6 - + no sampling but
threshold still 32
4 ] + " + .
Speed (s) £, e . | W Blink
+ + . + . .
9 T T $ + :{ * 4 F I o+ : + $ % % 3 .
| i*i + T Fals + + HE I«
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Real traces ID
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Blink avoids incorrectly inferring failures when packet loss is below 4%

packet loss % 1 2 3 4 5 ... 8 9
False Positive Rate
Blink 0 0 0 067 067 - 1.3 2.7
no sampling but 59 85 93 94 95 - 97 98

threshold still 32
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Blink quickly infers and avoids forwarding loops
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What parts of the CP should we offload

and how?

HW-accelerated CPs
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= vanbever_hw_accelerated_cps_hotnets_2018.pdf (page 1 of 7)
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Hardware-Accelerated Network Control Planes

Edgar Costa Molero Stefano Vissicchio Laurent Vanbever
ETH Ziirich University College London ETH Ziirich
cedgar@ethz.ch s.vissicchio@cs.ucl.ac.uk Ivanbever @ethz.ch
ABSTRACT cover the entire implementation spectrum, from pure software

One design principle of modern network architecture seems
to be set in stone: a software-based control plane drives a
hardware- or software-based data plane. We argue that it is
time to revisit this principle after the advent of programmable
switch ASICs which can run complex logic at line rate.

We explore the possibility and benefits of accelerating the
control plane by offloading some of its tasks directly to the net-
work hardware. We show that programmable data planes are
indeed powerful enough to run key control plane tasks includ-
ing: failure detection and notification, connectivity retrieval,
and even policy-based routing protocols. We implement in P4
a prototype of such a “hardware-accelerated” control plane,
and illustrate its benefits in a case study.

Despite such benefits, we acknowledge that offloading
tasks to hardware is not a silver bullet. We discuss its tradeoffs
and limitations, and outline future research directions towards
hardware-software codesign of network control planes.

1 INTRODUCTION

As the “brain” of the network, the control plane is one of
its most important assets. Among other things, the control
plane is responsible for sensing the status of the network (e.g.,
which links are up or which links are overloaded), computing
the best paths along which to guide traffic, and updating
the underlying data plane accordingly. To do so, the control
plane is composed of many dynamic and interacting processes
(e.g., routing, management and accounting protocols) whose
operation must scale to large networks. In contrast, the data
plane is “only” responsible for forwarding traffic according
to the control plane decisions, albeit as fast as possible.
These fundamental differences lead to very different de-
sign philosophies. Given the relative simplicity of the data
plane and the “need for speed”, it is typically entirely imple-
mented in hardware. That said, software-based implementa-
tions of data planes are also commonly found (e.g., Open-
VSwitch [30]) together with hybrid software-hardware ones
(e.g., CacheFlow [20]). In short, data plane implementations

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions @acm.org.

HotNets-XVII, November 15-16, 2018, Redmond, WA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6120-0/18/11...$15.00
https:/doi.org/10.1145/3286062.3286080

to pure hardware. In contrast, there is much less diversity in
control plane implementations. The sheer complexity of the
control plane tasks (e.g., performing routing computations)
together with the need to update them relatively frequently
(e.g., to support new protocols and features) indeed calls for
software-based implementations, with only a few key tasks
(e.g., detecting physical failures, activating backup forward-
ing state) being (sometimes) offloaded to hardware [13, 22].

Yet, we argue that a number of recent developments are
creating both the need and opportunity for rethinking basic
design and implementation choices of network control planes.

Need There is a growing need for faster, more scalable, and
yet more powerful control planes. Nowadays, even beefed-
up and highly-optimized software control planes can only
process thousands of (BGP) control plane messages per sec-
ond [23], and can take minutes to converge upon large fail-
ures [17, 36]. Parallelizing only marginally helps: for instance,
the BGP specification [31] mandates to lock all Adj-RIBs-In
before proceeding with the best-path calculation, essentially
preventing the parallel execution of best path computations.
A concrete risk is that convergence time will keep increasing
with the network size and the number of Internet destinations.
At the same time, recent research has repeatedly shown the
performance benefits of controlling networks with extremely
tight control loops, among others to handle congestion (e.g.,
[7.21,29)).

Opportunity Modern reprogrammable switches (e.g., [1]) can
perform complex stateful computations on billions of packets
per second [19]. Running (pieces of) the control plane at such
speeds would lead to almost “instantaneous” convergence,
leaving the propagation time of the messages as the primary
bottleneck. Besides speed, offloading control plane tasks to
hardware would also help by making them traffic-aware. For
instance, it enables to update forwarding entries consistently
with real-time traffic volumes rather than in a random order.

Research questions Given the opportunity and the need, we
argue that it is time to revisit the control plane’s design and im-
plementation by considering the problem of offloading parts
of it to hardware. This redesign opens the door to multiple re-
search questions including: Which pieces of the control plane
should be offloaded? What are the benefits? and How can
we overcome the fundamental hardware limitations? These
fundamental limitations come mainly from the very limited
instruction set (e.g., no floating point) and the memory avail-
able (i.e., around tens of megabytes [19]) of programmable
network hardware. We start to answer these questions in this
paper and make two contributions.
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Software-based control planes have room
for improvements



] Reaction time It can take seconds to minutes
to detect failures



2 Compute It can take minutes to recompute
an entire forwarding table



3 Update It takes ~100us to update
a single forwarding entry



Modern programmable devices can perform
computations on billions of packets per second



Read & modify packet headers

Perform (simple) operations

Add or remove custom headers

Maintain state



Could we offload control-plane tasks to the data plane?
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Yes... but...
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Could we offload control-plane tasks to the data plane?

sensing, notification, computation



Switches can precisely "sense” the network by
synchronously exchanging packet counts

O——QC
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Switches can precisely "sense” the network by
synchronously exchanging packet counts
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Upstream switch starts probing
campaigns
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Traffic for some prefixes
gets dropped

desltination
|
B o # received & forwarded packets
0
. 0 desltination
traffic i 0O —— # sent packets
|
— - T B 0
‘ 0 o
star.t Sto'.o detection state
counting counting | |
stored in registers
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Downstream switch sends counters

to upstream

desltination
|
B o # received & forwarded packets
2
— send counters & compare
. 2 desltination
traffic i 3 —— # sent packets
|
— T B 2
‘ N 2
star.t Sto'.o detection state
counting counting

stored in registers
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Upstream switch detects the failure
by comparing counters

desltination
|
B o # received & forwarded packets
2

— send counters & compare

. 2 desltination

traffic i 3 —— # sent packets
|
— T B 2
B 2
star.t Sto'.o detection state

counting counting
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Could we offload control-plane tasks to the data plane?

sensing, notification, computation



Upon detecting a failure,
switches can flood notifications network-wide

Avoid broadcast storms

» Use per switch broadcast sequence numbers

Simple reliable communication

» Send notification duplicates

» Use maximum priority queues

20



Could we offload control-plane tasks to the data plane?

sensing, notification, computation



Switches can run distributed routing protocols
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Switches can run distributed routing protocols
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Statically configured tables map prefixes to
registers in memory

destination
T network

@ |

(s )
N

10

output port—

maps prefixes

to registers

prefix-to-
index

50

50

link cost

A 10 statically
C 1 configured

Dort cost path

3

[A B C D]

forwarding state

stored in registers
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Registers store best paths and
its attributes

maps prefixes
to registers

pr_eflx-to- link cost
destination index
network Hl 50 A 10 statically
C | configured

Dort cost path
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output port—ﬂ only store the best path
10 and its attributes
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Switches periodically advertise vectors
to neighbors

prefix-to-

destination path index
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Switches periodically advertise vectors
to neighbors
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Switches periodically advertise vectors

to neighbors

@ |

destination path
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Computing new forwarding state
after a a link failure

prefix-to-
index

l 50 A 10 statically
link failure C 1 configured
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Computing new forwarding state
after a a link failure
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Computing new forwarding state
after a a link failure
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Does it actually work?
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Does it actually work? Yes!
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We built a P46 prototype

(we're working on a Tofino implementation)

Implementation

Capabilities

Implemented in P46

Compiled it to bmv?2

2k LoC

» Intra—domain destinations

path-vector routing

» Inter-domain destinations
BGP-like route selection
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We tested our implementation in a simple case study
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Only the internal switches run the
hardware-based control plane

36



Fach switch is connected to an external
peer or customer
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We generate two TCP flows
from AST and ASZ

AS3

—
X
AS7

AS4
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Switches monitor the traffic

AS3

—
AS7

AS4

Traffic S1- AS3

Bandwidth
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10 —

time [s]
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Internal link fails, triggering
the path-vector algorithm

Traffic S1- AS3

25

Bandwidth
[Mbps]
10 —
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_ link failure
6 —
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0 I I I |
(1) internal Link ’ o time [s]]5

AS2 failure
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AS2
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External link failure triggers a
prefix withdrawal

(2) external
AS3 Link failure

AS7

(3) prefix x
withdrawal
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AS2 failure
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Network computes new egress
and applies new policies

Traffic S5- AS5S

Bandwidth
[Mbps]
10 — JM.AJ\J\.A.AJ\M

(4) BGP export
policy violation ,

— withdrawal

0 4.8 15 25
time [s]
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Could we offload control-plane tasks to the data plane?

Yes... but...



Programmable hardware is not limitless
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Programmable hardware is not limitless

Some tasks cannot be offloaded

while offloading others is not desirable

= Reliable protocols
e.g. TCP requires too much state

® Poor scalability of control plane tasks

hardware memory is scarce and expensive
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Can we have the best of both worlds?
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Hardware-software codesign

Specification

CP Software
% Hardware

problem mapping architecture

graph set graph
functions constraints
Cost( .)

Vi:

Performancey .) pred(i)<100

Optimization

Synthesis
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Hardware-software codesign
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ETH Zrich led by Prof. Laurent Vanbever. We are also part of the ETH ICE center, a new group initiative on programmable and dependable
networked systems.

Our research interests are centered around complex network management problems, with the larger goal of making current and future networks
(especially the Internet) easier to design, understand and operate. We are currently active in multiple areas including network programmability,
data-driven networking, verification, routing, and security. Most of our projects are inherently multidisciplinary and tend to involve recent
advances in programming languages, algorithmics, and machine learning.
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SDNRacer, Stroboscope, and SWIFT. We are also currently looking at the impact of routing attacks on systems overlays such as
cryptocurrencies and anonymity networks. To learn about our work, please check out our research and publications pages.
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